Classification of Vitrified Forts

Exploration of vitrified fort classification

Currently, there is a single grouping of vitrified forts, it is our contention that in reality only a few forts should be classified as such, and that analysis would be helped if this classification was further refined. In order to perform better asnalysis of vitrified forts, it will be neccesary to attempt to classify the various features, the following discussion examines some possible options.

General Classification

1. Partially Vitrified or burnt forts where isolated areas of the fort are affected.
2. Totally Vitrified forts which have large areas of even vitrification..

Partial vitrification can occur where an intense heat causes vitrifaction in one or more isolated locations along part of the rampart, or where the temperatures were never so high as to cause the rock to melt. Such forts could include  Almondbury in Yorkshire where the excavation evidence indicates the fire started from a small area and the heat involved may not have been as high as 600 C. The causes of such vitrification and burning could be the result of attack or from accidental fire damage due to gateways or buildings burning in a prolonged and uncontrolled manner. In these cases it is probable that relatively small areas of burnt stone may occur, however it is our conjecture that since the design of the rampart meant fire would spread only with difficulty and would be easily doused by the inhabitants of the fort.

that ese types of forts from forts which are Totally Vitrified. Also included in this classification are forts which have been burnt as a result of a battle, the reason for this is that the intense heat required to cause the sorts of vitrification observed could only be the result of careful planning, it is not likely that enough fuel would have been easily to hand.

Total vitrification appears to be the application of an extreme temperature evenly throughout the entire length or significant section of the rampart for a significant time, to the extent that the rock face of the rampart actually melts and forms a glassy or bubbled surface.  Craig Phadrig for example shows signs of intense heat vitrification along the entire 230m circumference of its interior rampart. Another example is Wincobank which has heat vitrification along its 430m rampart

Dating of Forts

Insert dating evidence Here.

Vitrified forts are notorious for their lack of strong dating evidence, recently however,

Materials available to burn

A number of excavations have unvieled the charred remains of wood used in the vitrification process, wood is known to burn at different temperatures, with Oak and Yew being the hottest available in the British Isles. An analysis of the wood remains will reveal the natural burning temperature of the wood, which coupled with details of the rock in question would indicate if the wood alone could have reached the correct temperature to perform vitrification.

A further factor is other materials used to help the vitrification process, these may include; salt has been suggested as capable of raising the temperature of the fire, some rocks may themselves give off minerals which could increase the temperature or act as a flux during vitrification. Furthermore there is evidence that some vitrified ramparts had an outer layer of smaller stones which became the outer vitrified layer. Presumably some additional material would have been required to ensure the smaller stones remained in contact with the rampart long enough for them to fuse.

Number of Ramparts/specific relationship between vitrified ramparts and others

Many vitrified forts have a double circular or oval rampart, with the inner vitrified. This may show them as having a cultural similarity and therefore allow us to tie together multiple forts to determine the spread of the culture.

Types of Rock used in Vitrification

Geographic Distribution

Analysis of the geographic distribution shows a marked trend towards a “Scottish homeland” for vitrified forts. With a few exceptions vitrified forts occur mainly in scotland, out of 260 hill forts in Scotland, 48 have been shown to have been classified as vitrified. Eslewhere in the british Isles vitrification is almost unknown. Even in Scotland vitrified forts tend focus to the north of the Forth.

L’enigme des forts vitrifies

Mémo : RC-Forts vitrifiés (mise à jour mai 2001).

L’énigme des forts vitrifiés

C’est lors d’un voyage en Ecosse, au cours de l’été 1997, que nous avons entendu parler pour la première fois de forts vitrifiés. C’était au château d’Urqhart, au sud d’Inverness. Les monuments historiques fermant tôt, dans ce pays, nous ne pûmes voir que de loin cette impressionnante forteresse en ruine du XIIe siècle qui domine la rive occidentale du Loch Ness. Nous nous contentâmes juste de faire des photos au téléobjectif depuis le parking et de lire les panneaux retraçant l’historique du site. Sur l’un d’eux, la mention selon laquelle le château faisait partie de l’«ensemble des forteresses vitrifiées des Iles Britanniques » nous intrigua sans que nous puissions étudier de visu le phénomène de « vitrification ».

De retour en France, cette question nous préoccupa. Nous avions le vague souvenir d’avoir entendu parler de « forteresses vitrifiées » par le passé, sans pouvoir déterminer la source de cette information. Nous nous mîmes donc à tenter d’en apprendre plus sur le sujet mais nous dûmes rapidement nous rendre à l’évidence : il semblait être totalement ignoré des archéologues de notre pays alors que, de l’autre côté de la Manche, on fait référence aux forts vitrifés, presque comme s’il s’agissait d’une banalité.

En effet, au même titre que sur le panneau du château d’Urqhart, plusieurs ouvrages, achetés sur place, font assez souvent référence, sans cependant s’y étendre démesurément, à des « forteresses vitrifiés » [Vitrified hillforts]. C’est le cas, par exemple, de Scotland BC (« L’Ecosse avant J.-C »), dont un chapitre, consacré aux forteresses préhistoriques, aborde la question :

« Quand les premières fortifications écossaises furent-elles construites ? Il s’agit d’une question apparemment simple – mais pratiquement impossible à résoudre . Notre appréciation moderne de ce que l’on peut considérer comme des « défenses » peut ne pas recouvrir celle des peuples préhistoriques (…). Notre jugement repose sur la découverte de traces structurelles et d’armes. Sur cette base, la société préhistorique apparaît comme une société relativement pacifique au moins jusqu’au début du 1er. millénaire avant J.-C., à une exception près : un ouvrage massif entouré de palissades situé à Meldon Bridge, dans les Borders, mais cet ouvrage peut avoir été réalisé aussi bien dans un but de prestige que de défense. Cependant, vers la fin de l’âge du bronze, on trouve des preuves selon lesquelles la société amorça un changement et devint plus agressive. Les forgerons qui travaillaient le bronze commencèrent à produire en grande quantité des objets comme des épées et des boucliers dont la destination ne laissait aucun doute (…). Au même moment, on commença à construire les premiers forts de caractère défensif. Certains de ces forts furent construits en pierres liées (« laced ») avec des poutres pour les renforcer ; si un tel dispositif prenait feu, que ce soit accidentellement ou suite à une attaque ennemie, et si les conditions étaient réunies, la combustion des poutres provoquait la fusion des pierres qui, de ce fait se trouvaient amalgamées, avec pour conséquences la déformation du mur (on désigne ce phénomène sous le nom de « forts vitrifiés ») .

Le phénomène des forts vitrifiés est aussi presque systématiquement signalé dans une importante collection d’ouvrages dressant l’inventaire des monuments historiques de Grande-Bretagne (éditions PENGUIN). Voici, par exemple, ce qui en est dit dans l’introduction, dans le paragraphe consacré à l’âge du fer :

« Une renaissance économique semble avoir débuté vers 600 avant J.-C. avec le début de l’âge du fer, le travail du fer, particulièrement orienté vers la fabrication de charrues, ce qui permettait le développement de l’agriculture. La grande majorité des établissements de l’âge du fer visibles de nos jours étaient entourée de défenses. Les défenses atteignant les 375 m² sont appelées « dun ». Lorsque, bien que d’une technique comparable, elles couvrent une surface supérieure, on les appelle « forts ». Ces fortifications occupent généralement un promontoire, par exemple Brough of Stoll on Yell (Shetland), une hauteur, par ex. Craig Phadrig, Inverness, ou quelquefois un tertre, par ex. Dun-da-Lamh, près de Laggan (Badenoch and Strathspey), ou encore une île : Dun an t-Siamain, près de Carinish, sur l’île de North Uist (Western Iles). Leur dénominateur commun est d’avoir augmenté les défenses naturelles du site par la construction d’un rempart qui incorpore parfois un appareillage de poutres de bois, ce qui, si le feu est mis à l’ensemble, soit par accident ou volontairement par des attaquants, peut déterminer un incendie d’une telle intensité qu’il provoque une fusion des pierres qui se transforment alors en une masse vitrifiée, comme c’est la cas à Craig Phadrig ou à Dun Ladaigh, vers Ullapool (Ross and Cromarty) (…) » .

Mais, en France, même dans les milieux archéologiques, nous n’avons rencontré que très peu de personnes ayant entendu parler du phénomène de vitrification et encore moins à s’y être intéressés. Le premier ouvrage dans lequel nous avons trouvé une amorce de réflexion sur ce sujet est un livre destiné au grand public de Jean MARKALE, auteur d’un grand nombre d’ouvrages sur les Celtes :

« Un autre système est assez curieux : il remonte dans le temps, puisqu’on a commencé à l’employer à la fin de l’âge du bronze, c’est-à-dire aux environs de 800 avant notre ère. Il s’agit du procédé dit de vitrification. On a longtemps cru qu’il s’agissait d’un phénomène déclenché par l’incendie d’une forteresse au cours d’un combat, mais en fait, cette vitrification a été provoquée délibérément pour des raisons tactiques. Le noyau du rempart est constitué par une masse calcinée très dure et entièrement compacte, formée de pierres et de sable, ce qui donne au résultat un aspect très proche du verre épais et grossier. Cette calcination n’a pu se produire que sur place, après qu’on eut mélangé du bois aux matériaux entassés et qu’on y eut mis le feu. C’est une technique que les archéologues reconnaissent comme difficile à réaliser, mais qui a l’avantage incontestable d’assurer un rempart d’une solidité à toute épreuve, comme dans le fameux camp de Péran, non loin de Saint-Brieuc (Côtes d’Armor), qui reste un modèle du genre. »

Ayant eu l’occasion d’aller en Bretagne, au cours de l’été 1998, nous avons saisi l’occasion pour nous rendre à Péran. Le site, très facile d’accès, à la différence de beaucoup d’oppida que nous avons visités depuis, se trouve sur butte peu élevée, à quelques kilomètres du village de Plédran. A la sortie de l’agglomération, les panneaux routiers indiquent soit « camp romain » soit, encore plus curieusement « camp viking ». Sur le site même, des panneaux explicatifs, réalisés par le Centre archéologique de Péran (C.A.P.), font référence à une « destruction du camp par les Vikings ». On a en effet trouvé sur le site plusieurs objets attribués aux Vikings, « près du rempart ». Ces objets provenant de Grande Bretagne, en particulier des pièces de monnaies frappées à York vers le Xe. Siècle, on en a déduit, un peu hâtivement à notre avis, que le site, bien antérieur au Xe siècle puisque remontant à l’âge du fer, avait été détruit par les Vikings. Ce qui est plus étonnant, c’est qu’aucun de ces panneaux ne fait la moindre allusion au phénomène de vitrification, pourtant patent, comme on va le voir.

Le camp, de forme circulaire, se développe sur une circonférence d’environ 200 mètres. Une levée de terre est couronnée par les vestiges d’un mur dont les pierres sont littéralement fondues ensemble. Péran, pour reprendre les termes de Jean MARKALE, est effectivement un « modèle du genre ». De cela, nous pouvons en témoigner après avoir vu d’autres vestiges de forts vitrifiés beaucoup moins significatifs. Ici, le phénomène de vitrification saute aux yeux : on l’observe sur l’ensemble du rempart. Les pierres, d’origines géologiques diverses (mais toutes des roches dures : quartzites, dolérites, aplites ) sont fondues et collées entre elles (certaines ont même coulé, se transformant en un magma solidifié rappelant de la lave volcanique ) pour former une seule masse compacte.

Une partie du rempart a été reconstituée par les archéologues selon la technique du « murus gallicus ». Cette méthode, décrite par César dans la Guerre des Gaules, et attribuée par lui aux Gaulois (mais nous savons maintenant qu’elle remonte au moins à l’âge du fer), consistait à alterner poutres de bois et pierres.

M. Jean-Louis PAUTE, président du C.A.P., à qui nous nous étions adressé pour obtenir plus d’explications sur le site, nous a aimablement fait parvenir une brochure, éditée en 1991, qui retrace l’historique des recherches à Péran et leurs conclusions. Alors que, nous l’avons vu, aucune mention n’était faite de vitrification in situ, le texte de la brochure aborde largement le phénomène. Force est même de constater qu’il fut à l’origine de l’intérêt des archéologues du XIXe siècle pour cet oppidum, comme il le fut, d’ailleurs, nous l’avons constaté depuis, pour la plupart des oppida vitrifiés connus. Le site date, à l’origine, de l’âge du fer et son occupation a duré jusqu’à l’époque carolingienne. Selon les archéologues l’ayant étudié, l’oppidum aurait été détruit par les Vikings vers 905-925 après J.-C. Leur hypothèse, pour expliquer la vitrification du rempart, est classique : pour eux, il ne fait aucun doute que l’incendie du « murus gallicus », mis à feu lors du sac de l’oppidum, est le seul responsable du phénomène de vitrification . A l’appui de leur affirmation, les auteurs invoquent les datations obtenues par le Carbone 14 et l’archéomagnétisme. On sait toutefois depuis quelques années, particulièrement pour le C 14, que l’on ne peut plus avoir une confiance aussi absolue dans ses indications, en particulier dans le cas où de fortes températures ont été en jeu ; il est en effet désormais admis que de telles circonstances ont pour conséquence de rajeunir démesurément les datations obtenues .

Mais un autre constat nous fait prendre ces datations avec précautions : en effet, si la destruction de Péran remontait au Xe siècle, son cas serait unique car ce serait la vitrification la plus récente que l’on connaisse ! Quant à l’affirmation selon laquelle le phénomène qui a transformé le rempart de Péran en un magma vitreux serait imputable à la combustion du poutrage interne, on verra qu’il s’agit d’une allégation gratuite, sans doute bien pratique pour « expliquer » l’une des plus grandes énigmes de l’archéologie, mais qu’elle est totalement contredite par l’expérimentation.

L’un des rares ouvrages français qui aborde la question de la vitrification de remparts de l’âge du fer, « Villes, villages et campagnes de l’Europe celtique » , nous apprend que cette question a préoccupé, depuis plus d’un siècle, de nombreux archéologues. Certains, et non des moindres , ont même essayé de reproduire le phénomène à grand renfort de moyens techniques, mais la plupart on dû reconnaître leur échec :

« La toponymie, les légendes populaires, et encore aujourd’hui la littérature archéologique font une large place aux « enceintes vitrifiées » ou « calcinées ». Dans la masse des remparts de pierre écroulés, des « noyaux de chaux » ou des blocs fondus et soudés par la chaleur ont été découverts sur environ 150 sites. La plupart d’entre eux se trouvent en Ecosse et dans le Massif central . Ils ont excité la curiosité des chercheurs, et des hypothèses de toutes sortes ont été émises pour expliquer ce phénomène.
« Au début du XIXe siècle, leur origine a été attribuée aux feux qu’auraient allumés les guetteurs pour transmettre des nouvelles à la ronde. En effet les auteurs de cette époque sont très préoccupés des relations d’enceinte à enceinte, et chaque description du site s’accompagne de considérations sur la surveillance du territoire. Une hypothèse plus audacieuse attribue les vitrifications à la foudre, qui aurait ainsi eu une prédilection particulière pour les remparts préhistoriques. Enfin certains auteurs imaginent qu’il s’agit d’une technique mise au point pour augmenter la cohésion des matériaux du rempart. Même si la réalisation d’un tel projet dans des roches cristallines suppose une quantité de bois considérable, il est facile de concevoir l’intérêt du procédé qui permettrait d’avoir un rempart plus solide qu’un mur en béton. En revanche, les noyaux de chaux, que des auteurs comme Drioton croyaient avoir reconnus au cœur de talus érigés dans des régions calcaires, semblent d’un intérêt plus limité.
« En 1930, G. Childe parvient à fondre des blocs au cours d’une expérience sur une reconstruction, mais le choix des matériaux utilisés a été critiqué. Youngblood montre en 1978 que la combustion de l’armature de bois d’un rempart à poutrage interne ne peut pas provoquer de vitrification si un feu n’a pas été délibérément provoqué et entretenu dans ce but. I. Ralson reprend l’expérience en 1981 avec un rempart long de 9 m, large de 4 et haut de 2,40 m. Il le garnit intérieurement de poutres horizontales entrecroisées, dont les têtes dépassent en façade. Plusieurs camions de bois ont été déversés devant le parement et enflammés. La température au cœur du rempart ne s’est élevée que très lentement. Elle s’est effondrée chaque fois que le vent, au lieu de rabattre les flammes vers le rempart, les éparpillait dans les autres directions. Dans les restes du rempart disloqué par la chaleur, quelques fragments vitrifiés ont pu être recueillis. Il est donc bien clair qu’il faut un feu intense, bien entretenu dans des conditions météorologiques favorables, pour obtenir une vitrification (…).
« Dans tous les cas qui ont pu être étudiés jusqu’à maintenant, l’action du feu ne laisse jamais de traces régulières, systématiques, qui pourraient seules être interprétées comme la preuve de l’emploi d’une technique de construction basée sur la combustion de la roche . Il s’agit toujours d’observations localisées ou de traces irrégulières, jamais d’un parement vraiment soudé par le feu. De plus I. Ralston a montré que la carte des enceintes vitrifiées ou calcinées correspondait assez exactement à la répartition des enceintes à poutrage interne, de la protohistoire jusqu’au Moyen Age .
« S’agit-il alors des traces de l’attaque des habitats fortifiés ? La technique de siège la plus répandue avant l’intervention romaine consiste en effet à cribler de projectiles le sommet des remparts pour en déloger les défenseurs, puis à mettre le feu aux portes avant de se ruer à l’intérieur. Il est peu vraisemblable que, en pleine action, les assaillants aient eu le loisir d’entretenir un feu suffisamment intense pour obtenir des vitrifications qui réclament, l’expérience l’a montré, beaucoup de combustible et un vent favorable. Certaines enceintes écossaises sont d’ailleurs vitrifiées sur tout leur pourtour . Nous imaginons volontiers que la vitrification est le produit d’une destruction systématique des fortifications de l’adversaire après la prise et souvent le pillage de la place, pour bien marquer le caractère irrémédiable de la défaite. »

On regrettera que cette intéressante analyse, l’une des plus développées que nous ayons pour l’instant trouvées sur le sujet, ne fasse référence à aucun site précis , si ce n’est pour leur dénier la qualification d’enceintes «vitrifiés » (i.e. le camp de Myard et du Châtelet d’Etaules, fouillés par J.-P. Nicolardot , en Bourgogne ), ni ne renvoie, dans la bibliographie citée, à aucune étude de référence sur la question…

En conclusion, il semblerait que toutes les tentatives qui ont à ce jour été faites pour tenter de reproduire le phénomène de vitrification se soient soldées par un échec. La raison en serait que la température obtenue, si elle a permis de rubéfier les pierres, n’a cependant jamais été suffisante pour les vitrifier, sauf sur de toutes petites surfaces.

D’après les géologues consultés , la vitrification de matériaux comme le granite ne peut se produire en dessous de à 1000°. Une telle montée en température ne semble pas pouvoir être atteinte à l’air libre mais seulement à l’intérieur d’un four. Comment imaginer qu’on ait construit un four tout autour d’une enceinte de pierres de plusieurs centaines de mètres (Péran fait partie des « petits » oppida mais il en existe de beaucoup plus étendus…). Cela exclut de facto l’incendie accidentel.

Penchons-nous un instant sur l’hypothèse, défendue par certains , selon laquelle la vitrification aurait été obtenue volontairement pour solidifier l’ensemble. Voire… Nous avons nous-même constaté que, si certaines parties de remparts étaient en effet rendues plus résistantes par la vitrification, d’autres, au contraire, avaient été fragilisées, en particulier lorsque, dans le magma, on trouve des noyaux de chaux, résultante de la combustion du calcaire… Le mur, au lieu d’être renforcé, s’effondre alors.

Une autre hypothèse, que nous n’avons trouvé évoquée par quiconque, serait l’utilisation d’un produit chimique dont on aurait enduit les pierres et qui, mis à feu, aurait dégagé une chaleur supérieure à 1000°. Reste à savoir quel produit aurait pu être utilisé ? Reste aussi à comprendre la raison qui aurait poussé nos ancêtres de l’âge du fer à vitrifier (volontairement) leurs oppida ou ceux de leurs ennemis.

Voici pour les faits. Aucune explication rationnelle ne pouvant à ce jour être obtenue par l’archéologie, nous rappelant que les oppida vitrifiés se trouvaient, de par leur ancienneté et leur situation, liés à l’aire celtique, et nous souvenant de l’intéressante réflexion initiée par Jean MARKALE à propos de Péran, nous avons décidé d’aller voir d’un peu plus près du côté de la mythologie celtique si elle pouvait nous apporter des pistes inédites.

« Il faut d’ailleurs voir dans ce procédé de vitrification l’origine des traditions concernant l’Urbs Vitrea, Care Gwtrin et autres lieux du genre Royaume de Gorre, c’est-à-dire des « Cités de Verre » qui se rencontrent si souvent dans les romans arthuriens et d’une façon générale dans toutes les traditions mythologiques irlandaises ou bretonnes. Les « Villes Blanches » de la tradition orale, qui désignent toutes d’anciennes forteresses ruinées, sont un souvenir évident de cette technique, par ailleurs parfaitement oubliée. »

Si Jean MARKALE a raison, si toutes les « cités de verre », « châteaux de verre » (et leurs variantes) des légendes celtiques signalent d’anciens « forts vitrifiés », les voies de recherche sont immenses !

Nous commencerons par le site le plus occidental de l’aire celte où l’on ait signalé des vestiges de vitrifications : l’Ile de Tory, située au large de la côte ouest de l’Irlande. Cette île doit son nom à une tour, l’une de ces nombreuses round towers (« tours rondes ») qui se dressent encore par centaines sur l’Ile Verte (ainsi qu’en moindre quantité en Ecosse) et dont on n’a jamais réussi à ce jour à savoir quel en avait pu être l’usage véritable. Généralement, on les date des tout débuts de l’ère chrétienne et on les relie à l’existence des premiers monastères ; on suppose qu’elles ont pu servir de tours de guet ou qu’elles servaient à entreposer le trésor des monastères menacés par les raids des Vikings. Comment, alors, on-t-elle résisté alors que les monastères qui les entouraient ont été détruits ? L’extraordinaire qualité de leur architecture, faite de pierres magnifiquement appareillées, explique sans doute en partie le mystère. Le fait est qu’une de ces tours a tellement marqué l’histoire de cette petite île que l’île elle-même a pris le nom de la tour (Tor-Inis signifie « Ile de la Tour »). Voici ce que nous avons pu lire à son sujet :

« La tour de l’île de Toriniz, aujourd’hui île Tory (…), d’âge si vénérable, n’existe plus en tant que bâtiment. Toutefois, elle perdure encore, ou du moins perdurait au siècle dernier, en tant que ruines. Le grand étonnement des archéologues fut de constater que ces vestiges étaient vitrifiés. Quelle peut être la raison de cette vitrification ? » .

Or, c’est précisément sur cette île que, selon la tradition mythologique irlandaise, les Fomoire (ou Fomore), avaient installé leur camp de base et c’est de là qu’ils lançaient leurs expéditions militaires sur l’Irlande. Ce peuple mythique était composé de géants maléfiques, à la fois alliés, par des liens familiaux complexes, et néanmoins ennemis, des Tuatha de Danaann (les « enfants de la déesse Dana ou Ana »). Aucun de ces deux peuples n’était autochtone ; ils venaient tous les deux des « Iles du Nord du Monde », endroit mythique situé dans l’extrême nord dont on ne sait pratiquement rien. Les uns et les autres étaient dotés de puissants pouvoirs, réputés magiques pour nos ancêtres mais que nos connaissances techniques actuelles nous rendent familiers. L’un des chefs des Fomores, le géant Balor, par ailleurs grand-père du « dieu » Lug, un des Tuatha de Danaann, vivait sur Toriniz. De là, il envoyait un puissant flux d’énergie de l’autre côté du bras de mer qui le séparait de la terre d’Irlande pour foudroyer ses ennemis. Les descriptions que l’on a de Balor évoquent plus une machine qu’un être vivant : on le compare à un cyclope dont l’œil unique émettait un rayon qui réduisait en cendres ses ennemis : « C’est un géant effrayant dont l’unique œil foudroie toute une armée lorsqu’il soulève les sept paupières qui le protègent ». Cet « œil » extraordinaire devait être maintenu ouvert grâce à des crochets métalliques soulevés par plusieurs aides. Lors de l’une des trois batailles de Mag Tured qui se déroulèrent en Irlande entre les Fomore et les Tuatha de Danaann, le dieu Lug réussit à neutraliser l’œil maléfique de Balor en utilisant sa lance personnelle, que les textes appellent « lance d’Assal », l’un des quatre objets magiques rapportés des Iles du Nord du Monde . Cet objet avait lui aussi des propriétés étranges : il ne manquait jamais son but et devait être refroidi dans un chaudron rempli de sang humain .

Jean MARKALE, dans Les Celtes et la civilisation celtique, donne plus de détails sur cet instrument fabuleux :

« Lug est le possesseur d’une lance magique qui fait penser aux flèches à la fois meurtrières et guérisseuses d’Apollon. Elle s’appelle Gai Bolga . C’est l’emblème de l’éclair. Elle provient d’Assal, une des îles du nord du monde (allusion à l’Hyperborée) d’où étaient originaires les Tuatha Dé Danann. Cette lance avait un pouvoir venimeux et destructeur et, pour atténuer ce pouvoir, il fallait plonger la pointe dans un chaudron rempli de poison et de « fluide noir », c’est-à-dire de sang » . Après avoir été lancée, en utilisant un cri particulier (« ibar », qui signifie « if »), et touché son but qu’elle ne ratait jamais (« sa valeur est telle qu’elle ne frappe pas par erreur ») elle revenait d’elle même dans la main du dieu grâce à un autre cri, « athibar » : « elle revient en arrière jusqu’à la main qui l’a lancée » .

Qu’était donc cet objet ? Quelles techniques étaient-elles utilisées par Balor et par Lug pour se faire la guerre ? N’est-il pas étrange que la Tour de Toriniz, l’endroit précis où résidait le géant Balor, ait été vitrifiée ?

Depuis la première version de ce mémo (10/12/98), nous avons eu connaissance des travaux de RALSTON sur les oppida du Limousin et, pendant l’été 1999, nous sommes allés dans la Creuse pour tenter de voir quelques uns des sites cités dans cet ouvrage comme portant des traces de vitrifications. Nous avons dû constater que le travail de RALSTON, qui est l’un des inventaires les plus complets qui soient sur les forteresses de l’âge du fer en France, fait une large place au phénomène de vitrification. Malheureusement, sur place, l’accès aux sites est souvent rendu difficile par une végétation débridée et un manque d’entretien flagrant. Nous dûmes ainsi renoncer à nous rendre sur certains oppida que nous avions envisagé de voir en raison d’indications trop imprécises (ce fut le cas pour nous aux Muraux, commune de St. Georges de Nigremont). D’autres oppida, où l’on avait par le passé signalé des vitrifications, ont été détruits par une urbanisation sauvage et le manque de contrôle des instances dont ce devrait être le rôle: c’est déjà le cas de celui de Thauron qui ne bénéficie d’aucune mesure de protection. Lors de notre visite, nous avons même vu un brave homme démolir allègrement un mur de pierres qui se trouvait sur sa propriété et qui, d’après nos indications, était vraisemblablement l’un des seuls vestiges de l’oppidum… Les autres sites visités, pour n’être pas urbanisés, n’en sont pas pour autant mieux protégés. C’est le cas du fameux Puy de Gaudy, au-dessus du village de Ste. Feyre, au sud de Guéret, qui est le lieu de rendez-vous de promenade favori des pensionnaires de la maison de retraite de la MAIF située juste au-dessous et surtout des « VTTistes » qui franchissent sans sourciller les murailles de l’oppidum. Dans ce département, pourtant fort riche en vestiges archéologiques et historiques, rien ne semble fait par les autorités pour protéger les sites dont elles ont la responsabilité (sur aucun des oppida visités nous n’avons vu la moindre mention « site archéologique » ni la moindre interdiction !). Au cours de ces visites, par ailleurs assez décevantes pour les raisons que nous avons indiquées, nous n’avons relevé que peu de vitrifications indiscutables. Ce fut le cas sur l’un des sites, qui n’était pourtant pas réputé comme le plus représentatif : l’oppidum de Châteauvieux à Pionnat qui fait face au Puy de Gaudy. Elles sont pourtant tout-à-fait remarquables et indiscutables, mais le site, outre le fait qu’il n’est pas indiqué, est situé dans un bois à la végétation inextricab le. Nous avons pu cependant constater le même phénomène qu’à Péran : les pierres étaient littéralement « cimentées » entre elles par leur surface, certaines avaient fondu et s’étaient transformées en véritable « lave ». Sur place, la théorie lue ou entendue à propos de plusieurs sites, selon laquelle ces pierres vitrifiées étaient du machefer résultant d’un processus de fonte de métaux dans des haut-fourneaux répartis le long du rempart ne tient pas. En effet, à Pionnat, nous avons compris comment l’on pouvait confondre certains éboulements du rempart, qui forment une sorte de voûte cimentée par la vitrification des pierres, avec le cul-de-four d’un haut-fourneau. Cette confusion, excusable pour des non-spécialistes cherchant à tout prix une explication satisfaisant le bon-sens, ne l’est plus lorsqu’on la lit sous la plume d’archéologues officiels. Il suffit pour cela d’observer le rempart dans sa continuité pour s’apercevoir que ce que l’on a pris un peu vite pour des vestiges de hauts-fourneaux ne possède aucune des structures nécessaires au fonctionnement d’un tel dispositif (prise d’air, etc.). Il s’agit bien, purement et simplement, d’une « bulle de lave » comme on en observe dans les formations volcaniques naturelles, sauf que, dans le cas qui nous occupe, nous avons affaire à une construction qui a été artificiellement vitrifiée et non à un phénomène naturel.

Depuis ce voyage dans la Creuse, nous avons bien entendu poursuivi nos investigations qui nous ont permis d’identifier avec certitude d’autres forts vitrifiés, en particulier deux dans la région de Roanne (en mai 1999), et un autre dans l’Allier (en mai 2000).

Nous avons trouvé que l’aire d’extension de ces structures, que nous pensions au départ limitée aux Iles Britanniques, était beaucoup plus large puisqu’elle s’étend sur une grande partie de l’ère dite celtique, bien que chronologiquement antérieure à l’arrivée des Celtes en Europe de l’Ouest, puisque remontant à l’âge du fer.

Bibliographie

– Françoise AUDOUZE et Olivier BUCHSENSCHUTZ (1989): Villes, villages et campagnes de l’Europe celtique. Paris, Hachette, 1989 (collection Bibliothèque d’archéologie), pp. 120-121.
– Base Mérimée (Ministère de la Culture) ;
– Les Celtes (1997), ouvrage collectif publié sous la dir. De Sabatino Moscati à l’occasion de l’exposition Les Celtes au Palazzo Grassi à Venise, 1991. Paris, Stock, 1997.
– Gordon CHILDE : Excavations of the vitrified Fort of Finavon, Angus.
– John GIFFORD (1992): The buildings of Scotland : Highland and Islands London, Penguin Books, 1992.
– Guide Bleu Bretagne, Paris, Hachette, 1992.
– Guide Bleu Grande-Bretagne. Paris, Hachette, 1990 (réed. 1994).
– Guide du Routard Ecosse 1996-1997. Paris, Hachette, 1995.
– E. KOARER-KALONDAN et GWEZENN-DANA (1973) : Les Celtes et les extra-terrestres. Verviers, Marabout, 1973 (ouvrage épuisé).
– KOUSNETSOV, IVANOV et VELETSKY (1989): « Effects of fires and biofractionation of carbon isotopes on results of radiocarbon dating of old textiles », in : Actes du symposium scientifique international du CIELT, Paris, 1989.
– Jean MARKALE (1997): Petite encyclopédie du Graal. Paris, Pygmalion, 1997.
– Jean MARKALE (1992): Les Celtes et la civilisation celtique. Paris, Payot, 1969 (rééd. 1992).
– Sabine MARCILLE (1999) : « Civilisation celtique : ces étranges cités vitrifiées », in : Efferve-Sciences, n°11 (1999).
– J.-P. NICOLARDOT (1991): Le Camp de Péran, Saint-Brieuc, Centre archéologique de Péran, 1991.
– Jean-Paul PERSIGOUT (1985): Dictionnaire de mythologie celte. Paris, Ed. du Rocher, 1985 (rééd. 1990).
– Ian B.M., RALSTON (1992) : Les enceintes fortifiées du Limousin. Paris, éd. De la Maison des Sciences de l’Homme, 1992 (Documents d’Archéologie Française, n°36).
– Anna RITCHIE (1988) : Scotland BC Edinburgh, 1988 (rééd. 1994), H.M.S.O. (coll. Historic Scotland).
– Divers sites Internet anglais, le plus complet (pour les sites britanniques) étant : Prehistoric Web Sites..

Remerciements

Nous remercions :

– Notre frère Yvon COMTE, Documentaliste à la Direction Régionale des Affaires Culturelles Languedoc-Roussillon, pour nous avoir indiqué quelques forts vitrifiés recensés en France au titre des Monuments Historiques. C’est aussi grâce à ses recherches sur Internet que nous avons eu connaissance du site anglais Prehistoric Web Sites qui donne, à notre connaissance, la liste la plus étendue de forts préhistoriques des Iles Britanniques (dont un certain nombre sont vitrifiés). Nous lui devons aussi de nous avoir mis en contact avec Michel WIENIN, chargé de l’étude du patrimoine industriel à l’Inventaire Général, Direction des Affaires Culturelles Languedoc-Roussillon, qui nous a proposé de faire analyser certains échantillons de vitrifications recueillies par nos soins par l’Ecole des Mines d’Alès. Nous attendons avec impatience le résultat de ces analyses…
– Denise BONJOUR, éternelle chercheuse aux frontières du réalisme fantastique, qui nous a adressé une copie d’un article récent de Sabine MARCILLE (1999). Outre que nous avons ainsi l’impression de nous sentir moins seuls, nous y avons trouvé quelques nouveaux sites qui ont enrichi notre documentation.
– Michel ROUVIERE, pour nous avoir retrouvé d ans sa bibliothèque Le livre des secrets trahis de Robert CHARROUX, livre que nous avions eu en main il y a bien des années et où nous avions entendu pour la première fois parler de « Cités vitrifiées ».
– Merci aussi à tous ceux dont les indications sur place nous ont permis de visiter certains oppida difficiles à trouver, en particulier : Mme DUQUESNE, à Lussac-les-Châteaux (86), M. Eugène MAZEROLLES (à Bègues, Allier), qui nous a offert quelques échantillons de vitrifications prélevées sur sa propriété, les mairies de St. Alban-les-Eaux et de Villerest (42) ainsi que tous les anonymes qui ont bien voulu nous consacrer un peu de leur temps.

INVENTAIRE DES FORTS VITRIFIES
(mise à jour août 2000)

– ECOSSE (10 sites)

1.1. An Cnap (Iles d’Arran) (source : site internet des Iles d’Arran) ;.
1.2. Barry Hill (Allyth, Perthshire) (“All that remains of this vitrified fort are a massive tumbled stone wall and subsidiary ramparts”, site internet d’Alyth);
1.3. Craig Phadrig, département d’Inverness (« Two vitrified walls enclose an area 75m by 25m. The inner wall stands 1.2m high on the inside”, site internet easyweb.easynet);
1.4. Dun Deardail (vers Lochaber, ouest de l’Ecosse) [source : site internet de Lochaber] ;
1.5. Dun Lagaidh, commune de Ullapool, département de Ross & Cromarty ) (« Massive stone rampart of the 1st millenium BC, now vitrified and so originally timber-laced (…)” [Source : HAI];
1.6. Finavon (Angus) [Source : CHILDE, 1935];
1.7. Knock Farril, commune de Strathpeffer, dépt. Ross & Cromarty, (Oblong hilltop fort of the 1st millenium BC, its stone rampart heavily vitrified so presumably originally laced with timber » ; Source : HAI);
1.8. Tor a’Chaisteal Dun, Ile d’Arran (Irlande) ;
1.9. Urqhart Castle (près d’Inverness) ;
1.10. White Caterthun (Incidemment signalé par RALSTON, 1992 comme étant vitrifié à propos du site français du Camp de César à CHATEAUPONSAC, Hte.-Vienne).

2) IRLANDE (1 site)

2.1.Tour de Toriniz, Tory Island (Irlande). Voir ce qui en est dit dans le texte ci-dessus..

3) FRANCE ( plus de 70 sites recensés, dont au moins une 20e vitrifiés)

3.1. Allier (03)

3.1.1. BEGUES : Oppidum de Bègues (« Rempart vitrifié », RALSTON, 1992). Une visite, en mai 2000, nous a permis d’obtenir la preuve de la vitrification. Echantillons prélevés .

3.2. Cantal (15)

3.2.2. COREN : Puy de la Fage [RALSTON (1992), p. 124]. Confusion possible avec La Fage-Montivernoux (Lozère).
3.2.3. ESCORAILLES : Pas de lieu-dit. [RALSTON (1992), p. 124].
3.2.4. LA COURBE : « Le Château Gontier ». Attention ! : risques de confusion avec La Courbe, près d’Argentan (Orne).
3.2.5. MAURIAC (a) : « Vieux Château », hameau d’Escoalier* (« Certains indices laissent à penser que les deux communes voisines peuvent avoir chacune une enceinte vitrifiée », RALSTON, 1992). * Confusion possible avec Escorailles (voir ci-dessus).
3.2.6. MAURIAC (b)
3.2.7. MAURIAC (c)

3.3. Charente (16)

3.3.1. MOUTHIERS-SUR-BOEME : Pas de lieu-dit [RALSTON (1992), p. 124].
3.3.2. VOEIL ET GIGET : « Camp des Anglais ou de la Pierre Dure » (« Traces de calcination sur toute la longueur du talus, 210 m de long, 5-6 m de haut et 25 m de large. La surface de cet éperon barré couvre 3 ha env. », RALSTON, 1992). Bien qu’on ne parle que de « calcination », le toponyme de « Pierre Dure » pourrait être un indice de vitrification.
3.3.3. SOYAUX : « Camp de Recoux ». [RALSTON (1992), p. 124].

3.4. Cher (18)

3.4.1. LA GROUTTE : « Camp des Murettes » (ou « de César »). « S’étend sur 4 ha. » [RALSTON (1992), p . 124].

3.5. Corrèze (19)

3.5.1. LAMAZIERE-BASSE : « Champ du Châtelet » au lieu-dit Les Bessades (« Pierres vitrifiées dans l’éboulement à l’extrémité orientale du mur intérieur. Autres gneiss vitrifiés, non seulement dans l’éboulis du rempart mais également à l’extrémité orientale du mur à l’extérieur. La vitrification semble être limitée à cette partie du site », RALSTON (1992), pp. 46-47. Dans sa bibliographie, l’auteur renvoie à VAZEILLES : Station vitrifiée avec muraille vitrifiée du Châtelet, commune de Lamazière-Basse (Corrèze).)
3.5.2. MONCEAUX S/DORDOGNE : « Puy de la Tour » ou « du Tour » (« Un bloc de pierre vitrifiée », RALSTON (1992), pp. 49-53).
3.5.3. MONCEAUX S/ DORDOGNE : « Puy Grasset » ou « Granet » au lieu-dit « Le C(h)astel » ou « le Chastelou » au village de Raz. « Quelques traces de vitrifications visibles dans les roches schisteuses du sommet de la motte (qui serait d’époque médiévale ». « Desbordes décrit l’enceinte comme vitrifiée et, sans doute, médiévale ». [RALSTON (1992), p. 53] 3.5.4. ST. GENIEZ-Ô-MERLE : « Puy de Sermus » ou « Vieux Sermus ». (« L’indice principal de fortifications consistait en un tronçon de mur vitrifié, haut de 1,5 m et long de 3 m, situé sur le côté nord-ouest du site où l’accès était le plus facile. (…) Les défenses reconnaissables consistaient en deux tronçons de murs vitrifiés avec une pente artificielle à l’extérieur. (…) Une fouille sur le côté nord-ouest a montré que le mur vitrifié était construit directement sur la roche, qui présentait quelques signes d’une vitrification superficielle. », RALSTON, 1992.)
3.5.5. ( ?) ST. PRIVAT : « Camp de Srmus » (ou « Sermus ») [MARCILLE, p. 17]. Il doit s’agir d’une confusion avec le précédent.

3.6. Côtes d’Armor

3.6.1. PLEDRAN : Camp de Péran [MARKALE (1997), pp. 133-135. Site visité en juillet 1998. La vitrification est patente sur l’ensemble du site, qui était parfaitement dégagé lors de notre visite. La roche est fondue et amalgamée en de gros blocs soudés ensemble. Echantillons prélevés. Voir ce que nous en disons plus haut.

3.7. Côte d’Or (21)

3.7.1. BOUILLAND : « Le Châtelet ». Sans autre précision.
3.7.2. CRECEY-SUR-TILLE : « Camp de fontaine Brunehaut » [RALSTON (1992), p. 124. Il ne dit pas s’il est vitrifié ou non].
3.7.3. CHAMBOLLE-MUSIGNY : « Enceinte de Groniot » (ou « Gromiot »). Sans autre précision.
3.7.4. ETAULES : « Le Châtelet » (« Restes carbonisés de poutres », RALSTON, 1992). On ne parle pas de vitrification. MARCILLE (1999), p. 17 cite « Le Chevalet ». Nous pensons qu’il doit s’agir d’une graphie erronée.
3.7.5. FLAVIGNEROT : « Camp de César » dit aussi Enceinte du Mont Afrique. [RALSTON (1992), p. 125].
3.7.6. GEVREY-CHAMBERTIN : « Enceinte du Château-Renard » [RALSTON (1992), p. 125].
3.7.7. MESSIGNY : « Enceinte de Roche-Château ». Pas d’autres précisions.
3.7.8. PLOMBIERES-LES-DIJON : « Enceinte du Bois brûlé » [RALSTON (1992), p. 125]. Le toponyme de « Bois Brûlé », rencontré sur d’autres sites, peut être la confirmation d’une vitrification.
3.7.9. VAL SUZON : « Le Châtelet de Val Suzon ou de la Fontaine du Chat ». « Situé juste en face du Châtelet d’Etaules, de l’autre côté de la vallée » [donné comme étant vitrifié par MARCILLE (1999), p. 17]. (« Couche brûlée », selon RALSTON (1992).
3.7.10. VELARS S/OUCHE : « Enceinte de Notre-Dame de l’Etang ». Donné comme vitrifié par MARCILLE (1999), p. 17.
3.7.11. VIX : « Mont Lassois » (« La ‘levée de terre’ méridionale (…) semble avoir été construite sur un niveau brûlé sur lequel reposent des pierres parfois rubéfiées ou calcinées », RALSTON, 1992). On ne parle pas de vitrification.
Ainsi, peut-être, que d’autres sites d’après les études de Nicolardot (cité par RALSTON, 1992).

3.8. Creuse (23)

3.8.1. AUBUSSON : « Camp des Chastres ». Traces de vitrifications [RALSTON (1992), p. 70].
3.8.2. & 3.8.3. BUDELIERE : « Promontoires de St. Marien » et de « Ste. Radegonde ». Nous nous sommes rendus sur le promontoire de Ste Radegonde en 1999 à partir des indications de RALSTON mais le site étant très embroussaillé, nous n’avons pu observer de vitrifications.
3.8.4. JARNAGES : Enceinte sous le nom de « Château ».
3.8.5. PIONNAT : Oppidum au village* de « Châteauvieux ». [RALSTON (1992), pp. 75-79]. * Le hameau de Châteauvieux est distant de Pionnat de plusieurs km. Enceinte ovale de 128 m de longueur axiale. Malgré l’embroussaillement du site, notre visite de l’été 1999 nous a permis de confirmer l’existence d’une vitrification importante, bien visible et indiscutable : plus encore qu’à Péran, les pierres sont fondues et amalgamées entre elles. On voit même des traces de coulures, comme dans le cas de laves volcaniques. La chaleur a dû être d’une intensité extrême. Certaines descriptions du site parlent de vestiges de fours à chaux ou de fours à métaux. Nous pensons qu’il s’agit d’une mauvaise interprétation des observations faites par des personnes qui n’avaient jamais vu de vitrifications. Pour nous, il ne fait aucun doute que Pionnat montre des traces patentes de vitrifications. Echantillons prélevés. Un autre site, « Ville de Ribandelle (ou Ribaudelle ») lui ferait face.
3.8.6. STE. FEYRE : « Puy de Gaudy ». Visité à la même époque. Même observation qu’à Pionnat mais la dégradation du rempart et son embroussaillement ne nous ont pas permis de constater des traces évidentes de vitrifications. [RALSTON (1992) ; base Mérimée].
3.8.7. ST. GEORGES DE NIGREMONT : « Les Muraux » (ou « le Muraud »). [RALSTON (1992), pp. 80-81. Malgré les indications de RALSTON, complétées par des indications recueillies sur place auprès des habitants qui connaissaient l’existence du site, nous n’avons pu identifier l’emplacement de l’oppidum des Muraux. Ils nous ont conseillé de contacter Monsieur EUCHER à Rouzelie, qui avait fouillé le site, ce que nous n’avons pu faire.
3.8.8. THAURON : Village. Visite décevante : inutile de rechercher des traces de vitrifications. Le site a été totalement détruit par l’extension anarchique du village, installé sur l’oppidum et rien n’est fait pour préserver ce qui pourrait en subsister.

3.9. Dordogne

3.9.1. PERIGUEUX : Enceinte du « Camp de la Boissière » située sur l’un des contreforts de la rive droite de l’Isle en face de Périgueux. Ne pas confondre avec Périgneux (Loire).
3.9.2. ST. MEDARD D’EXCIDEUIL : « Castel Sarrazi » à Gandumas (« Au moins deux ouvrages distincts et profondément vitrifiés sont conservés (…). Les traces de la position originelle du poutrage ont été reconnues dans la masse vitrifiée (…). » [RALSTON (1992)]. Même observation à Péran.

3.10. Doubs (25)

3.10.1. MYON : « Châtelet de Montbergeret » [RALSTON (1992), p. 126].

3.11. Finistère (29)

3.11.1. ERGUE-ARMEL : « Berg-ar-Castel » [RALSTON (1992), p. 126]. Rien n’indique que ce site soit vitrifié.
3.11.2. HUELGOAT : « Camp d’Arthus ». « Rempart massif secondaire, non daté, recouvrant un murus gallicus de type Avaricum. » [RALSTON, 1992, p. 132]. Site visité au cours de l’été 1998. Malheureusement l’étendue du site, par ailleurs très embroussaillé, ne nous ont pas permis d’étudier si certaines parties montraient des traces de vitrifications.
3.11.3. LOSTMARC’H (près de CROZON). [Les Celtes, p. 586].

3.12. Ille-et-Villaine (35)

3.12.1. VIEUX-VY-SUR-COUESNON : « Oppidum d’Orange » [RALSTON (1992), p. 126.

3.13. Jura (39)

3.13.1. SALINS : « Camp du Château-sur-Salins ». « Matériau calciné sur environ 4 m de long sur le côté ouest du rempart préhistorique (…). » [RALSTON (1992), p. 127].

3.14. Loire (42)

3.14.1. PERIGNEUX : « Pic de la Violette » (« Un plateau à 650 m d’altitude est décrit comme partiellement enclos par de faibles murailles et des blocs vitrifiés », [RALSTON (1992), p. 127]. Ne pas confondre avec Périgueux (Dordogne).
3.14.2. ST. ALBAN-LES-EAUX : « Châtelus » [ ou « Châtelux », chez RALSTON, 1992, graphie manifestement erronée]. (« Matériaux vitrifiés retrouvés sur place », RALSTON, 1992). Visite superficielle du site en mai 1999, les broussailles et la mousse recouvrant les pierres m’ont empêché d’identifier tout vestige de vitrification. Cela ne veut pas dire qu’il n’y en ait pas. Sur place, les gens connaissent le site sous le nom de « Château de verre », appellation qui me paraît suffisamment significative pour qu’on puisse admettre ce site dans la liste des vitrifications (voir MARKALE).
3.14.3. VILLEREST : « Le Château-Brûlé » à Lourdon. Visite à Villerest en mai 1999. Je n’ai pu accéder au site mais la mairie m’a communiqué le résultat de fouilles effectuées par Stéphane Boutet (cité par MARCHAND, 1991), qui confirme l’existence d’un « rempart vitrifié » et le rapproche du « Château de verre » de ST. ALBAN-LES-EAUX ; ce texte indique en outre : « Ce type de rempart vitrifié n’est pas unique dans notre région ». A propos de l’appellation « château de verre », même remarque qu’au-dessus, voir ce qu’en dit MARKALE.
3.14.4. ST. BONNET-DES-QUARTS (région de ROANNE) : « Oppidum des Carres (ou des Quarts) ». Nous nous sommes rendus sur place en mai 1999, mais nous n’avons pu situer l’endroit de l’oppidum..

3.15. Lot (46)

3.15.1. CRAS : « Murcens ». [RALSTON (1992), p.127].
3.15.2. LUZECH : « L’impernal ». [RALSTON (1992), p. 127].

3.16. Lozère (49)

3.16.1. LA FAGE-MONTIVERNOUX : « Puy de la Fage ». [RALSTON (1992), p. 127]. Attention : confusion possible avec « Le Puy de la Fage » dans le Cantal (commune de COREN). Souvent ces sites remarquables ont été pris comme limite de plusieurs communes, ce qui peut induire des erreurs d’attribution à telle ou telle commune.

3.17. Mayenne (53)

3.17.1. LOIGNE-SUR-MAYENNE : « Les Caduries ». Vitrifié [RALSTON (1992), p. 127].
3.17.2. ST. JEAN-DE-MAYENNE : « Enceinte de Château-Meignan ». [RALSTON (1992), p. 127 ; MARCILLE (1999), p. 17].
3.17.3. STE. SUZANNE : « Le Château ». Il semble que nous ayons affaire à deux sites distincts : « Le Château » et « Le Camp des Anglais ». Selon RALSTON (1992) : « Le matériau vitrifié provenant de cette commune vient du pied du château de Ste. Suzanne et non du Camp des Anglais » .

3.18. Meurthe-et-Moselle

3.18.1. CHAMPIGNEULLES : « Enceinte de la Fourasse » (ou « Tourasse). Traces de vitrifications selon RALSTON (1992), p. 127. MARCILLE (1999).
3.18.2. ESSEY-LES-NANCY : « La butte (ou enceinte) Ste. Geneviève » (« Traces d’incendie du rempart encore observables sur le côté ouest du site », RALSTON, 1992). On ne parle pas de vitrification.
3.18.3. MESSEIN : « La Cité », ou « Le Camp d’Affrique » ou « le Vieux-Marché » (« Traces de calcination », RALSTON, 1992). On ne parle pas de vitrification.
3.18.4. SION-COUVENT : Lieu-dit non précisé. RALSTON (1992) parle de « Traces de calcination », non de vitrifications.

3.19. Morbihan

3.19.1. LANDEVANT-KERVARHET : « Kervarhet » (« Enceinte d’un diamètre de 200 m. Traces de vitrification », RALSTON, 1992).

3.20. Moselle (57)

3.20.1. LESSY : Pas de lieu dit [RALSTON (1992), p. 128].

3.21. Nièvre

3.21.1. LA MACHINE : « Enceinte du Vieux Château » ou « Cité de Barbarie ». Vitrification certaine [MARCILLE (1999), p. 18, avec un plan].

3.22. Oise

3.22.1. GOUVIEUX : Camp de César (« Traces de calcination », « Rempart massif secondaire élevé au-dessus d’un rempart à poutrage interne brûlé : ce dernier n’a pas été daté. » RALSTON (1992), p. 132. On ne parle pas de vitrification.

3.23. Orne (61)

3.23.1. ARGENTAN : Fort vitrifié. Il se peut qu’il s’agisse du même site que le suivant.
3.23.2. LA COURBE : « Le Haut du Château ». (« Traces étendues d’une combustion intense, notamment des blocs vitrifiés et des pierres de revêtement altérées par la chaleur », RALSTON, 1992).

3.24. Puy-de-Dôme (63)

3.24.1. et 3.24.2. CHATEAUNEUF-LES-BAINS : « Montagne de Villars » (« Le matériau vitrifié vient d’un rempart long de 14 m qui forme l’un des côtés d’un rectangle de 7 m X 15 m couronnant une butte de pierres », RALSTON, 1992). Une visite sur place en mai 2000 ne nous a pas permis de trouver le site mais un habitant du hameau de Villars, à qui nous avons demandé notre chemin, connaissait l’existence de « pierres fondues ». Il nous a indiqué qu’il n’y a avait pas un seul site, sur lequel on trouvait ces pierres, mais deux. D’après ses explications, nous avons compris qu’il s’agissait de deux oppida, proches l’un de l’autre.

3.25. Haut-Rhin (68)

3.25.1. HARTSMANWILLER : « H artmannswillerkopf ». « Des vestiges d’une enceinte vitrifiée d’époque protohistorique existaient au Hartmannswillerkopf mais ont été détruits durant la bataille du Vieil Armand en 1914 et 1915. » [Base Mérimée du ministère de la culture].

3.26. Haute-Saône (70)

3.26.1. BOURGUIGNON-LES-MOREY : Pas le lieu-dit. « Site de 3 ha. Traces de calcination dans un talus de pierres épais d’env. 3 mètres (On ne parle pas de vitrification) [RALSTON, 1992, p. 129].
3.26.2. MACHEZAL* : Crêt Chatelard (« Matériau vitrifié mais il n’est pas certain qu’il sot en rapport avec une vitrification » RALSTON, 1992). * Près de CHIRASIMONT, au S/E de Roanne.
Une autre source indique aussi un « tumulus burgonde et une tombe aux murs vitrifiés ». Il s’agit sans doute du même site.
3.26.3. NOROY-LES-JUSSEY : Pas de lieu-dit : « Enceinte de 2,5 ha. Traces de calcination des fortifications. » [RALSTON (1992), p. 129]. On ne parle pas de vitrification.

3. 27. Vienne (86).

3.27.1. ASLONNES : Camp d’Alaric (« Pautreau semble admettre que cette fortification a été calcinée », [RALSTON (1992)].
3.27.2. CHATEAU-LARCHER : « Site de Thors ou Thorus ». « Fort vitrifié ; les ruines n’ont pas été fouillées. »
3.27.3. QUINCAY : « Camp de Séneret (ou Céneret) » entre Quinçay et Vouillé (« Traces de calcination », [RALSTON (1992) et MARCILLE (1999)].

3.28. Haute-Vienne (87)

3.28.1. CHATEAUPONSAC : « Chégurat ou Camp de César ». Les vitrifications sont comparées à celles de White Catherhurn (Ecosse) [RALSTON (1992), pp. 89-90].
3.28.2. SEREILHAC-LA-BAISSE : Pas de lieu-dit (« Pierres vitrifiées qui ne semblent pas associées à une fortification ». [RALSTON (1992), p. 129].

3.29. Yonne (89)

3.29.1. ST. MORE : « Camp de Cora » [RALSTON (1992), p. 130].

Vitrified Forts Gazeteer

INVENTORY OF THE FORTS VITRIFY (updated August 2000)
by Roland Comte

Translated from the original French version by an Internet engine – sorry!

– SCOTLAND (10 sites)

1.1. Year Cnap (arran Iles) (source: site internet of the arran Iles);.

1.2. Barry Hill (Allyth, Perthshire) (” All that remains of this vitrified strong are has massive tumbled stone wall and subsidiary ramparts”, site internet alyth);

1.3. Craig Phadrig, inverness department (« Two vitrified walls enclosed year area 75M by 25M. The inner wall
stands 1.2m high one the inside”, site internet easyweb.easynet);

1.4. Dun Deardail (towards Lochaber, west of Scotland) [source: site internet of Lochaber];

1.5. Dun Lagaidh, commune of Ullapool, department of beat up & Cromarty) (« Massive stone rampart of the 1ST millenium BC, now vitrified and so originally timber-laced (…)” [source: HAI];

1.6. Finavon (Angus) [Source: CHILDE, 1935];

1.7. Knock Farril, commune of Strathpeffer, dépt. Beat up & Cromarty, (Oblong strong hilltop of the 1ST millenium BC, its stone rampart heavily vitrified so presumably originally laced with timber »; Source: HAI);

1.8. Tor a’Chaisteal Dun, arran Ile (Ireland);

1.9. Urqhart Castle (close to Inverness);

1.10. White Caterthun (in passing signaled by RALSTON, 1992 as being vitrified about the French site of the Camp of Caesar to CHATEAUPONSAC, Hte. -Vienne).

2) IRELAND (1 site)

2.1.Tour of Toriniz, Tory Island (Ireland). See this that some is said in the text above..

3) FRANCE (more than 70 inventoried sites, of which at least a 20th vitrified ones)

3.1. Ally (03)

3.1.1. BEGUES: Oppidum of Stutterers (« vitrified Wall », RALSTON, 1992). A visit, in May 2000, we allowed to obtain the proof of the vitrification. Removed Echantillons.

3.2. Cantal (15)

3.2.2. COREN: Puy of the Fage [RALSTON (1992), p. 124]. Possible confusion with The fage-montivernoux (Lozère).

3.2.3. ESCORAILLES: Not any place says. [RALSTON (1992), p. 124].

3.2.4. THE BEND: « The Castle Gontier ». Attention! : Risk confusion with The Bend, close to argentan (Decorates).

3.2.5. MAURIAC (has) : « Old Castle », escoalier hameau* (« Certain indices leave to think that the two communes neighbor can have each a pregnant vitrified one », RALSTON, 1992). * Possible Confusion with Escorailles (to see above).

3.2.6. MAURIAC (b)

3.2.7. MAURIAC (c)

3.3. Charente (16)

3.3.1. MOUTHIERS-ON-BOEME: Not any place says [RALSTON (1992), p. 124].

3.3.2. VOEIL AND GIGET: « Camp of the English or Rock Lasts » (« calcination Tracks on the whole length of the talus, 210 m of long one, 5-6 top m and 25 m of wide one. The surface of this blocked éperon covers 3 hectares env. », RALSTON, 1992). Well that one speaks only of « calcination », the toponyme of « Rock Lasts » could be an index of vitrification.

3.3.3. SOYAUX: « Camp of Recoux ». [RALSTON (1992), p. 124].

3.4. Dear (18)

3.4.1. THE GROUTTE: « Camp of the Murettes » (or « of Caesar »). « SPREADS ITSELF on 4 hectares. » [RALSTON (1992), p. 124].

3.5. Corrèze (19)

3.5.1. Lamaziere-basse: « Field of the Châtelet » to the place says The Bessades (« vitrified Rocks in the éboulement to the eastern extremity of the internal wall. Other vitrified gneiss, not only in the éboulis of the wall but equally to the eastern extremity of the wall to the exterior one. The vitrification seems to be limited to this party of the site », RALSTON (1992), pages. 46-47. In his bibliographie, the author relates back to VAZEILLES: vitrified Station with vitrified wall of the Châtelet, lamazière-basse commune (Corrèze).)

3.5.2. MONCEAUX s/dordogne: « Puy of the Tower » or « Turn » (« A rock pad vitrified », RALSTON (1992), pages. 49-53).

3.5.3. MONCEAUX S/ DORDOGNE: « Puy Grasset » or « Granet » to the place says « The C (h) astel » or « the Chastelou » to the town of Raz. « Some tracks of visible vitrifications in the rocks schisteuses of the summit of the motte (that would be medieval era ». « Desbordes describes the pregnant one as vitrified and, doubtless, medieval ». [RALSTON (1992), p. 53]

3.5.4. ST. GENIEZ-o-BLACKBIRD: « Puy of Sermus » or « Old Sermus ». (« THE principal INDEX of fortifications consisted in a wall section vitrified, high of 1,5 m and long of 3 m, situated on the northwestern side of the site where the access was the easiest one. (…) The defenses reconnaissables consisted in two sections of vitrified walls with an artificial slope to the exterior one. (…) A search on the northwestern side showed that the vitrified
wall was constructed directly on the rock, that presented some signs of a superficial vitrification. », RALSTON, 1992.)

3.5.5. (?) ST. PRIVAT: « Camp of Srmus » (or « Sermus ») [MARCILLE, p. 17]. It must be a matter of a confusion with the preceding one.

3.6. Armor coasts

3.6.1. PLEDRAN: Camp of Péran [MARKALE (1997), pages. 133-135. Visited site in July 1998. The vitrification is obvious on the body of the site, that perfectly was released at the time of our visit. The rock is melted and combined in of big soldered pads together. Removed Echantillons. See this that we some say higher.

3.7. Coast of now (21)

3.7.1. BOUILLAND: « The Châtelet ». Without other precision.

3.7.2. CRECEY-ON-TILLE: « fountain Camp Brunehaut » [RALSTON (1992), p. 124. It does not say if it is vitrified or no].

3.7.3. Chambolle-musigny: « Pregnant of Groniot » (or « Gromiot »). Without other precision.

3.7.4. ETAULES: « The Châtelet » (« Remain charred beams », RALSTON, 1992). One does not speak any vitrification. MARCILLE (1999), p. 17 city « The Easel ». We think that it must be a matter of an erroneous graphie.

3.7.5. FLAVIGNEROT: « Camp of Caesar » says Pregnant so of the Mount Africa. [RALSTON (1992), p. 125].

3.7.6. Gevrey-chambertin: « Pregnant of the Castle Fox » [RALSTON (1992), p. 125].

3.7.7. MESSIGNY: « Pregnant of Rock Castle ». Not any other precisions.

3.7.8. PLOMBIERES-THEM-DIJON: « Pregnant of Wood burnt » [RALSTON (1992), p. 125]. The toponyme of « Drinks Burned », met on of other sites, can be the confirmation of a vitrification.

3.7.9. VAL SUZON: « The Châtelet of Val Suzon or Fountain of the Cat ». « Situated just opposite the etaules Châtelet, on the other side valley » [given as being vitrified by MARCILLE (1999), p. 17]. (« Puts to bed burned », according to RALSTON (1992).

3.7.10. VELARS s/ouche: « Pregnant of Our Lady of the etang ». Given as vitrified by MARCILLE (1999), p. 17.

3.7.11. VIX: « Mount Lassois » (« The ‘raised earth’ southern (…) seems to have been constructed on a burnt level on which one rest rocks sometimes rubéfiées or charred », RALSTON, 1992). One does not speak any vitrification. Thus, maybe, that of other sites according to the studies of Nicolardot (quoted by RALSTON, 1992).

3.8. Hollow (23)

3.8.1. AUBUSSON: « Camp of the Chastres ». Tracks of vitrifications [RALSTON (1992), p. 70].

3.8.2. & 3.8.3. BUDELIERE: « Promontoires of St. Marien » and of « Ste. Radegonde ». We returned ourselves on the promontoire of Ste Radegonde in 1999 from the indications of RALSTON but the site being very overgrown, we were not able to observe vitrifications.

3.8.4. JARNAGES: Pregnant under the name of « Castle ».

3.8.5. PIONNAT: Oppidum to the town* of « Châteauvieux ». [RALSTON (1992), pages. 75-79]. * The hameau of Châteauvieux is distant Pionnat of several km. Oval pregnant of 128 length m axial. Despite the embroussaillement of the site, our visit of the summer 1999 allowed us to confirm the existence of an important one, well visible vitrification and indiscutable: more again than to Péran, the rocks are melted and combined between they. One sees even tracks of drips, as in the case of wash volcaniques. The heat had to be of an extreme intensity. Certain descriptions of the site talk about traces of ovens to limes or of ovens to metals. We think that it is a matter of a bad interpretation of the observations done by persons that never had not seen vitrifications. For us, there is no doubt that Pionnat shows obvious tracks of vitrifications. Removed Echantillons. Another site, « City of Ribandelle (or Ribaudelle ») would face for him.

3.8.6. STE. FEYRE: « Puy of Gaudy ». Visited to the same era. Same observation that to Pionnat but the degradation of the wall and his embroussaillement did not allow us to note evident tracks of vitrifications. [RALSTON (1992); bases Mérimée].

3.8.7. ST. GEORGES OF NIGREMONT: « The Wall ones » (or « the Muraud »). [RALSTON (1992), pages. 80-81. Despite the indications of RALSTON, completed by collected indications on the spot with the inhabitants that knew the existence of the site, we were not able to identify the location of the oppidum of the Wall ones. They counseled us to contact Mister EUCHER to Rouzelie, that had searched the site, this that we were not able to do.

3.8.8. THAURON: Town. Disappointing visit: useless to look for tracks of vitrifications. The site totally was destroyed by the anarchic extension of the town, installed on the oppidum and nothing is not done to preserve this that could some to exist.

3.9. Dordogne

3.9.1. PERIGUEUX: Pregnant of the « Camp of the Boissière » situated on the one of the buttresses of the upright shore of the isle opposite Périgueux. Do not to confuse with Périgneux (Loire).

3.9.2. ST. Excideuil MEDARD: « Castle Sarrazi » to Gandumas (« at least two distinct and deeply vitrified works are preserved (…). The tracks of the original position of the poutrage were recognized in the vitrified mass (…). » [RALSTON (1992)]. Same observation to Péran.

3.10. Doubs (25)

3.10.1. MYON: « Châtelet of Montbergeret » [RALSTON (1992), p. 126].

3.11. Finistère (29)

3.11.1. Ergue-armel: « Berg-ar one-Castle » [RALSTON (1992), p. 126]. Nothing indicates only this site is vitrified.

3.11.2. HUELGOAT: « arthus Camp ». « Secondary massive Wall, dated no, recovering a murus gallicus type Avaricum. » [RALSTON, 1992, p. 132]. Visited site during the course of the summer 1998. Unfortunately it spread of the site, besides very overgrown, did not allow us to study so certain parties showed tracks of vitrifications.

3.11.3. Lostmarc’h (close to CROZON). [the Celts, p. 586].

3.12. Ille-and-Villaine (35)

3.12.1. . 126.

3.13. Jura (39)

3.13.1. SALINE: « Camp of the Castle-on-Saline ». « Charred Material on about 4 m of long one on the side west of the wall préhistorique (…). » [RALSTON (1992), p. 127].

3.14. Loire (42)

3.14.1. PERIGNEUX: « Peak of the Violet » (« A plateau to 650 altitude m is described as partially enclosed by of weak walls and vitrified pads », [RALSTON (1992), p. 127]. Do not to confuse with Périgueux (Dordogne).

3.14.2. ST. ALBAN-THEM-WATERS: « Châtelus » [or « Châtelux », with RALSTON, 1992, obviously erroneous graphie]. (« Vitrified rediscovered Materials on the spot », RALSTON, 1992). Superficial visit of the site in May 1999, the brushlands and the foams recovering the rocks prevented me from identify all trace of vitrification. That does not want to say that it not there in have. On the spot, the people know the site under the name of « glass Castle », name that appears me sufficiently significant for that one can admit this site in the list of the vitrifications (to see MARKALE).

3.14.3. VILLEREST: « The Burnt Castle » to Lourdon. Visit to Villerest in May 1999. I was not able to attain the site but the city hall communicated me the result of searches effectuated by Stéphane Boutet (quoted by MERCHANT, 1991), that confirms the existence of a « vitrified wall » and the comes close to the « glass Castle » of ST. ALBAN-THEM-WATERS; this text indicates in addition: « This wall type vitrified is not unique in our region ». About name « glass castle », even notices that au-dessus, see this that some says MARKALE.

3.14.4. ST. CAP-OF THE-QUARTER (region of ROANNE) : « Oppidum of the Ensconce (or Quarter) ». We returned ourselves on the spot in May 1999, but we were not able to situate the place of the oppidum..

3.15. Batch (46)

3.15.1. CRAS: « Murcens ». [RALSTON (1992), p.127]. 3.15.2. LUZECH: « THE impernal ». [RALSTON (1992), p. 127].

3.16. Lozère (49)

3.16.1. THE fage-montivernoux: « Puy of the Fage ». [RALSTON (1992), p. 127]. Attention: possible confusion with « The Puy of the Fage » in the Cantal (commune of COREN). Often these remarkable sites were taken as limit of several communes, this that can induce granting errors to such or such commune.

3.17. Mayenne (53)

3.17.1. LOIGNE-ON-MAYENNE: « The Caduries ». Vitrified [RALSTON (1992), p. 127].

3.17.2. ST. JOHN-OF-MAYENNE: « Pregnant of Castle meignan ». [RALSTON (1992), p. 127; MARCILLE (1999), p. 17].

3.17.3. STE. SUZANNE: « The Castle ». It seems that we have to deal with two distinct sites: « The Castle » and « The Camp of the English ». According to RALSTON (1992) : « The vitrified material originating of this commune comes from foot of the castle of Ste. Suzanne and no of the Camp of the English ».

3.18. Meurthe-and-Moselle

3.18.1. CHAMPIGNEULLES: « Pregnant of the Fourasse » (or « Tourasse). Tracks of vitrifications according to RALSTON (1992), p. 127. MARCILLE (1999).

3.18.2. ESSEY-THEM-NANCY: « mounds It (or pregnant) Ste. Geneviève » (« fire Tracks of the again observable walls on the side west of the site », RALSTON, 1992). One does not speak any vitrification.

3.18.3. MESSEIN: « The City », or « The affrique Camp » or « the Old Market » (« calcination Tracks », RALSTON, 1992). One does not speak any vitrification.

3.18.4. Sion-couvent: Said Place specified no. RALSTON (1992) talks about « calcination Tracks », no of vitrifications.

3.19. Morbihan

3.19.1. Landevant-kervarhet: « Kervarhet » (« Pregnant of a diameter of 200 Mr. Tracks of vitrification », RALSTON, 1992).

3.20. Moselle (57)

3.20.1. LESSY: Not any place says [RALSTON (1992), p. 128].

3.21. Nièvre

3.21.1. THE MACHINE: « Pregnant of the Old Castle » or « Quoted Barbarity ». Certain Vitrification [MARCILLE (1999), p. 18, with a plan].

3.22. Oise

3.22.1. GOUVIEUX: Camp of Caesar (« calcination Tracks », « massive secondary Wall raised above a wall to internal burnt poutrage: the latter was not dated. » RALSTON (1992), p. 132. One does not speak any vitrification.

3.23. Decorate (61)

3.23.1. ARGENTAN: Strong vitrified. It can himself that it is a matter same site that the following one. 3.23.2. THE BEND: « The Top of the Castle ». (« Spread Tracks of an excessive combustion, notably vitrified pads and rocks of revêtement impaired by the heat », RALSTON, 1992).

3.24. Puy-of-dome (63)

3.24.1. and 3.24.2. CHATEAUNEUF-THEM-BATHS: « Mountain of Villars » (« The vitrified material comes from a long wall of 14 m that forms the one of the sides of a rectangle of 7 m X’S 15 m crowning a mounds rocks », RALSTON, 1992). A visit on the spot in May 2000 did not allow us to find the site but an inhabitant of the hameau of Villars, to that requested us our way, knew the existence of « melted rocks ». It indicated us that it there has not had a single site, on which one one found these rocks, but two. According to its explanations, we understood that it was a matter of two oppida, near of each one other.

3.25. High rhin (68)

3.25.1. HARTSMANWILLER: « H artmannswillerkopf ». « Traces of a pregnant one vitrified of era protohistorique existed to the Hartmannswillerkopf but were destroyed during the battle of the Old Armand in 1914 and 1915. » [Bases Mérimée of the ministry of the culture].

3.26. High saône (70)

3.26.1. BURGUNDIAN-THEM-MOREY: Not the place says. « Site of 3 hectares. Calcination tracks in a talus of thick rocks of env. 3 meters (One does not speak any vitrification) [RALSTON, 1992, p. 129].

3.26.2. MACHEZAL* : Crêt Chatelard (« vitrified Material but it is not certain that it foolish in report with a vitrification » RALSTON, 1992). * Close to CHIRASIMONT, to the s/e of Roanne. Another source indicates also a « tumulus burgonde and a grave to the vitrified walls ». It is a matter without doubts the same site.

3.26.3. NOROY-THEM-JUSSEY: Not any place says: « Pregnant of 2,5 hectares. Calcination tracks of the fortifications. » [RALSTON (1992), p. 129]. One does not speak any vitrification.

3. 27. Come (86).

3.27.1. ASLONNES: alaric Camp (« Pautreau seems to admit that this fortification was charred », [RALSTON (1992)].

3.27.2. Chateau-larcher: « Site of Thors or Thorus ». « Strong vitrified; the ruins were not searched. »

3.27.3. QUINCAY: « Camp of Séneret (or Céneret) » between Quinçay and Vouillé (« calcination Tracks », [RALSTON (1992) and
MARCILLE (1999)].

3.28. High comes (87)

3.28.1. CHATEAUPONSAC: « Chégurat or Camp of Caesar ». The vitrifications are compared to the one of White Catherhurn (Scotland) [RALSTON (1992), pages. 89-90].

3.28.2. SEREILHAC-IT-LOWERS: Not any place says (« vitrified Rocks that do not seem associated to a fortification ». [RALSTON (1992), p. 129].

3.29. Yonne (89)

3.29.1. ST. MOORISH: « Camp of Cora » [RALSTON (1992), p. 130].

Roland Comte granted a Master’degree in Political Science and is a Doctor of anthropology (EHESS, University of Paris-Sorbonne ). E-mail : rcomte2@wanadoo.fr

Mystery of Vitrified Forts

The Mystery of Vitrified Hillforts
by Roland Comte

It was during a trip to.Scotland, in the Summer of 1997, that I first heard of vitrified hillforts. It was near Urqhart Castle, south of Inverness. As ancient monuments close early in that country, I could only see from a distance that impressive ruined fortress overlooking the west bank of Loch Ness. I had to be content with taking telephotographs from the car park and reading the notices on boards recounting the history of the site. I was intrigued by a sentence on one of them, saying that the castle was part of “the whole group of vitrified hillforts in the British Isles”, but I had no opportunity of studying the phenomenon of vitrification de visu .

Once back in France, the question still puzzled me. I had a vague memory of having heard of vitrified hillforts in the past, but could not find the source of the information. So I tried to learn more on the subject, but soon had to bow to facts : it seemed totally unknown to archaeologists in our country, whereas, on the other side of the Channel, vitrified hillforts are referred to as quite common.

Indeed, just as the notice board by Urqhart Castle, several books I had bought on the spot often mention “vitrified hillforts” without dwelling too much on the subject. It is the case, for instance, of Scotland B.C. , in which a chapter dealing with prehistoric fortresses tackles the question:

When were Scotland’s earliest fortifications built? This is a deceptively simple question – and virtually impossible to answer 1. .Our modern appreciation of what ranks as defences may not match the view of prehistoric people, even if we had a complete record of what they built, and our judgement must depend upon structural traces and discoveries of weapons. On that basis, prehistoric society appears to have been relatively peace-loving until the early part of the first millennium BC, with one possible exception : massively stockated enclosure built in late neolithic times at Meldon Bridge in the Borders, but even that may have been motivated by prestige rather than defence. Towards the end of the bronze age, however, there are clues to suggest that society was changing and becoming more aggressive. Bronzesmiths began to produce in large quantities items such as swords and shields that can only be weapons and defensive arms rather than equipment for hunting […] At the same time, the first defensive forts were being built. Some of the earliest forts were those built with stone walls laced with timbers to strengthen them; if such a fort were set on fire, either accidentally or by enemy attack, and if conditions were right, the burning timbers caused the stone work to melt and fuse together and the wall to become distorted (these are known as vitrified forts) 2 .

Besides, vitrified hillforts are almost systematically mentioned in an important collection of books drawing up an inventory of the historical monuments of Great Britain (Penguin). Here is, for instance, what the introduction says in the paragraph dealing with the iron age :


An economic revival seems to have begun c.600 BC, with the beginning of the iron age, the working of iron, especially for ploughs, making possible a much improved agriculture. The great majority of iron age settlements now visible have been protected by defences. Some, whose defences enclosed an area up to 375 sq.m., are classified as duns, others, generally similar but larger, as forts. These usually occupied a promontory, e.g. Brough of Stoal on Yell (Shetland), a hilltop, e.g. Craig Phadrig, Inverness, or sometimes a knoll, e.g. Dun-da-Lamh, near Laggan (Badenoch and Strathspey), or an island, e.g. Dun ant-Siamain ,nearCarinish, on North Uist (Western Isles). Their common feature is the supplementing of the site’s natural defence by a stone rampart that has sometimes incorporated a timber framework, which, if set on fire by accident or an attacker, could burn with such intensity as to fuse the stone into a vitrified mass, as at Craig Phadrig or Dun Lagaidh, near Ullapool (Ross and Cromarty) 3.

But, in France, even among archaeologists, I have met very few people who have heard of vitrification, and still fewer who have been interested by the subject. The first study in which I found the beginning of some thought on the subject was a book aimed at the general public, by Jean MARKALE, the author of many books on the Celts :

Another system is strange enough : it goes back a long way, since it was first used at the end of the bronze age, i.e. around 800 BC. It is the process of vitrification. It was long believed to be a phenomenon brought about by fire in a fortress during a battle, but in fact, this vitrification was deliberately started for tactical reasons. The core of the rampart is made of a very hard and totally solid burnt mass, made up of stones and sand, which gives the final product an aspect very close to that of thick coarse glass. This calcination could only have taken place on the spot, after some wood had been mixed with the heaped up material and set ablaze. Archaeologists admit that this is a difficult technique, but it has the unquestionable advantage of providing a thoroughly reliable rampart, as in the famous Camp de Péran, not far from Saint-Brieuc (Cötes d’Armor), which stands as a perfect example 4.

As I happened to visit Brittany during the Summer of 1998, I seized the opportunity to go to Péran. This site, unlike the numerous oppida I have visited since, stands on a small hillock, a few kilometres from Plédran village. As one leaves the centre, road signs point either to “Roman camp” , or more strangely to “Viking camp” . On the site itself, explanatory notices, drawn up by the Péran archaeological centre (C.A.P.), refer to a “destruction of the camp by the Vikings“. Actually, several objects attributed to the Vikings were found on the site, “near the rampart”. As these came from Great Britain, especially coins minted in York around the Xth century, it was inferred – a bit hastily I think – that the site had been destroyed by the Vikings in the Xth century. What is more surprising is that none of the notices alludes to vitrification, though the phenomenon is obvious, as will now be shown.

The circular camp extends about 200 metres in circumference. A levee is topped by the remains of a wall whose stones are literally melted together. Péran, in Jean MARKALE’s words, is indeed a “model of the kind”. I can testify to this after seeing other vestiges of much less characteristic hillforts. Here the vitrifying process is obvious, and is to be observed on the whole rampart. Some of the stones, of various geological origins – ‘but all of them hard (quartzites, dolerites, aplites) 5 -have even flowed, and are melted and stuck together, turning into a solidified magma recalling volcanic lava 6 , and forming a dense bulk.

One part of the rampart has been reconstructed by archaeologists using the murus gallicus technique, described by Caesar in De bello gallico, and consisting in alterning timber and stones.The roman general ascribed it to the Gauls, but we now know it dates back, at least, to the iron age M. Jean-Louis PAUTE, chairman of the C.A.P., whom I contacted to obtain further explanations about the site, kindly sent me a booklet, published in 1991, which relates the history of research in Péran and its conclusions. Whereas, as said above, no mention was made of vitrification on the spot, the booklet amply deals with the phenomenon. We must even admit that it aroused the XIXth century archaeologists’ interest in this oppidum, and also in most of the known vitrified oppida, as I have noted since. The site dates back to the iron age and was inhabited until the Carolingian period. According to the archaeologists who studied it, the oppidum may have been destroyed by the Vikings about 905-925 AD. They explain the vitrification of the rampart through a classical hypothesis : undoubtedly the fire in the murus gallicus , started during the storming of the oppidum, was the only cause of the vitrification phenomenon 7 . To support this statement, the authors refer to dating through Carbon 14 and archaeomagnetism. Yet it has been known for a few years that, particularly in the case of C14, one cannot totally rely on its information, especially when high temperatures have been at work : indeed it is now acknowledged that under such circumstances, dating goes to a much more recent period 8 .

But another observation causes me to use this dating cautiously. For, if the destroying of Péran dated back to the Xth century, it would be a unique case, indeed the latest vitrification known so far. And saying that what turned the rampart of Péran into a glassy magma was the burning of the inner timber is a groundless statement, certainly very useful to “explain” one of the greatest archaeological riddles, but wholly contradicted by experimentation.

One of the few French studies tackling the question of iron age rampart vitrification, Villes, villages et campagnes de l’Europe celtique 9 reveals that, for more than a century, many archaeologists have been concerned with the problem. Some outstanding ones 10 have even tried to reproduce the phenomenon with a copious supply of technical devices, but most of them had to admit their failure 11.

Toponymy, popular legends, and evenl to-day, archaeological literature profusely deal with “vitrified” or “calcined” walls. In the mass of crumbled stone ramparts, “lime knots” or melted blocks welded by heat have been discovered on about 150 sites. Most of them are to be found in Scotland and in the Massif central 12.They have aroused the research workers’ curiosity, and all kinds of theories have been put forward to explain the phenomenon.
At the beginning of the XIXth century, their origin was believed to be due to fire kindled by watchmen to send news around. Indeed at this period, authors are much preoccupied with the relationships between walled sites, and each description of a site contains reflexions on territory-watching 13. A bolder 14 theory attributes the vitrifications to lightning, which would have evinced a particular preference for prehistoric ramparts. Lastly, some authors imagine that a technique was worked out to increase the cohesion of materials. Even if realising such a project with crystalline rocks implies using a huge quantity of wood, it is easy to understand how profitable would be a process allowing to obtain a rampart stronger than a concrete wall. Conversely, the lime-knots authors like Drioton thought they had discovered inside banks set up in chalky areas, seem to possess a more limited interest.
In 1930, G. Childe managed to melt blocks during some experiment on a reconstruction site, but his choice of materials was criticised . In 1938,Youngblood showed that burning the internal wooden frame of a timbered rampart cannot bring about vitrification if fire has not been deliberately started and kept ablaze for that purpose. I. Ralston renewed the experiment in 1981 on a 9 metre long , 4 metre wide and 2.40 metre high rampart. He furnished the inside of it with horizontal intertwined beams, with their heads sticking out on the front. Several truckloads of wood were stacked in front of the facing wall and set on fire. The temperature inside the rampart only rose very slowly. It went down every time the wind blew the flames away from the rampart. In the remains of the rampart broken up by the heat, a few vitrified fragments could be gathered. It clearly appears that, in order to obtain vitrification, one must have a strong well-kept up fire, under favourable weather conditions […] In all the cases studied so far, the action of the fire never leaves regular systematic traces, which alone could be interpreted as proving the use of a building technique based on burning the rock 15 . Observations are always limited in space or traces are irregular. No facing wall is really welded by the fire. Moreover I. Ralston has shown that the map of vitrified or calcined ramparts quite precisely corresponded to the distribution of internally timbered ramparts, from protohistory to the Middle Ages 16 .
Then are the traces those of the attack of fortified dwellings ? The most common besieging technique before the Roman invasion consisted in riddling the rampart with projectiles to dislodge the defenders, then in setting the gates on fire before rushing in. It is hardly likely that, in the middle of the battle, the attackers could manage to keep a strong enough fire to obtain vitrifications which have been proved to require much fuel and a favourable wind. Some Scottish ramparts are even vitrified all around 17. I am inclined to imagine that vitrification is the result of a systematic destroying of the enemy’s fortification after the place had been captured and often plundered, to emphasise the irreversible nature of the defeat.

One may regret that this interesting analysis, one of the most elaborate we have found on the subject so far, refers to no precise site 18, except in order to deny them the quality of “vitrified” ramparts (e.g. the Camp de Myard and the Châtelet d’Etaules, investigated by J.P. Nicolardot 19 in Burgundy); neither does it mention, in its bibliography, any reference study on the question.

To conclude, it appears that all the attempts made so far at reproducing the phenomenon of vitrification have failed. This is probably due to the fact that the temperature could redden the stones, but was never high enough to vitrify them, except on very small areas.

According to the geologists I have consulted 20, the vitrification of materials like granite cannot be obtained under 1000° C. Such a high temperature cannot be reached in open air, but only inside a furnace. How can we imagine that a furnace was built all around a stone rampart several hundred metres long ( Péran is one of the “small” oppida, but there exist bigger ones…) This de facto excludes any accidental fire.

Let us consider for a moment the theory upheld by some authors 21, that vitrification was deliberately caused to strengthen the whole structure. Indeed… I have myself observed that, if some sections of the ramparts have really been strengthened by vitrification, others, on the contrary, have been weakened, especially when, within the magma, lime-knots are to be found, as a result of burnt chalk. Then, instead of getting stronger, the wall collapses, leaving a wide gap in the defensive structure, thus weakening the whole ensemble .

Another theory, would be the use of a chemical product, spread on the stones, and set ablaze, thus producing a heat higher than 1000°C. There would remain to discover the nature of such a product, and to understand why our iron age forefathers should have been led deliberately to vitrify their oppida or those of their enemies.

So much for facts. No rational explanation can be provided to this day by archaeology. So, remembering that vitrified oppida, through their antiquity and location, belong to the Celtic area (even if they cannot actually be attributed to the Celts), and recalling the interesting observation proposed by Jean MARKALE about Péran , I decided to see if a closer scrutiny of Celtic mythology could reveal any new prospects.

This method of vitrification must be considered as the origin of traditions concerning the Urbs Vitraea, Care Gwtrin and other places like the Kingdom of Gorre, i.e. the “Glass Cities” that are so often alluded to in Arthurian romances, and more generally in all Irish or Breton mythological traditions . The “White Cities” of oral tradition, all of them referring to old dilapidated fortresses, are obvious memories of this otherwise thoroughly forgotten technique 22 .

If Jean MARKALE is right, if all the “glass cities”, “glass castles” and such like in Celtic legends mean ancient “vitrified forts”, then research prospects become vast indeed !

Let us begin with the farthest western point of the Celtic area where vestiges of vitrifications have been located : the Isle of Tory , lying off the western coast of Ireland. This island owes its name to a tower, one of the numerous “round towers” still standing in hundreds on the Green Island (and also in smaller numbers in Scotland), and whose real use has not been determined so far. They are generally considered as dating from the earliest times AD, and referred to the creation of the first monasteries. They are supposed to have been used as watch-towers, or as safes for monastery treasures threatened by Viking raids. How, then, have they survived, when the surrounding monasteries were almost completely destroyed ? The outstanding quality of their architecture, made up of wonderfully bonded stones, could partly explain the mystery. Indeed, one of those towers so much bore upon the history of that small island that the latter was called after its name (Tor-Inis meaning “Tower Island”). Here is what I read on the subject :

The tower on Toriniz island – to-day Tory Island – so old and venerable, no longer stands as a building. However, it still survives, or at least survived during the last century, as a ruin. Archaeologists were much amazed to find that those remains were vitrified. What can have caused this vitrification ?23

Now, according to Irish mythological tradition, the Fomoire (or Fomore ) had precisely settled their quarters in that island, and from there launched their raids on Ireland. They were a mythical people of evil giants; they were both the allies of the Tuatha de Danaann (“the goddess Dana or Ana’s children”) , through complex family ties, and their enemies. Neither of those two peoples were natives. They had both come from the World’s Northern Isles, a mythical place in the far North, of which practically nothing is known. Both were endowed with huge powers which our ancestors regarded as magical, but are now familiar thanks to our technical knowledge. One of the Fomore chiefs, the giant Balor, grandfather of the “god” Lug, one of the Tuatha de Danaann lived on Toriniz. From there, he would send a powerfull beam, wich we could call nowadays a “flux of energy” across the channel between Toriniz and Ireland, to blast his enemies. Those descriptions we have of him recall a machine rather than a living creature : he is compared to a Cyclops whose only eye cast out a beam that turned his enemies into ashes. He is a frightening giant whose only eye blasts a whole army when he opens the seven eyelids protecting it 24 . That extraordinary eye had to be kept open thanks to metal hooks held up by several assistants. During one of the three battles at Mag Tured in Ireland between the Fomore and the Tuatha de Danaann, the god Lug managed to put Balor’s evil eye out of order with his own spear, which the texts call “Assal’s spear”, one of the four magical objects brought back from the World’s Northern Isles 25 . That weapon also possessed strange properties : it never missed the mark and had to be cooled down in a cauldron filled with human blood 26 .

In Les Celtes et la civilisation celtique, Jean MARKALE gives some more detail on this fabulous tool :

Lug possesses a magical spear similar to Apollo’s both deadly and healing arrows. It is called Gai Bolga 27 .It is the thunderbolt emblem. It originated from Assal, one of the World’s Northern Isles (an allusion to Hyperborea), where the Tuatha de Danaann came from. That spear possessed a venomous destroying power and, to reduce that power, its point had to be dipped into a cauldron filled with poison and “black fluid”, i.e. blood 28 . After it had been thrown – with the war-cry “ibar” (meaning “yew”) – and it had hit its target, which it never missed (“it is so worthy that it never misses the mark”), it spontaneously flew back to the god’s hand, thanks to another cry, “athibar” : “it comes back to the hand that threw it” 29.

What was that instrument ? What techniques did Balor and Lug use to wage war on each other ? Is it not strange that Toriniz Tower, the very dwelling place of the giant Balor, was vitrified ?

Since the first version of the present paper (10/12/98), I have known of RALSTON’s research on the oppida in Limousin 30 and, during the Summer of 1999, I went to the département of Creuse, to try and see several of the sites referred to in that book as bearing traces of vitrifications. I could observe that RALSTON’s work, one of the most complete inventories on the iron age fortresses in France, copiously deals with the phenomenon of vitrification. Unfortunately, on the spot, it is often difficult to reach the sites, because of overgrowing vegetation and obvious neglect. I also had to give up visiting a few oppida I had planned to see, because of inaccurate information ( as in the case of Muraux in the village of St. Georges de Nigremont). Other oppida, where years ago vitrifications had been reported, have been destroyed through wild urbanising and lack of control on the part of the authorities supposed to be in charge : it is already the case of Thauron, which remains wholly unprotected. During our visit, I even saw a fellow blithely demolishing a stone wall on his property which, I was informed, probably was one of the only remains of the oppidum. The other sites I visited, though not urbanised, are not better protected. This is true of the Puy de Gaudy, above Ste Feyre village, south of Guéret, the favourite walking spot of the MAIF old people’s home below, and even more of mountain-bike adepts, who will ride undisturbed over the oppidum walls. In this département, where archaeological and historical remains are numerous, the authorities seem to do nothing to protect the sites they are in charge of (on no oppidum have I seen any mention “archaeological site”, or any prohibition!) During those visits, which were rather disappointing for the above reasons, I have observed few unquestionable vitrifications. For instance one of the sites that was not known as the most characteristic, the oppidum of Châteauvieux at Pionnat, facing the Puy de Gaudy. Vitrifications there are remarkably genuine, but the site, besides being unmentioned, is situated in an inextricable wood. Yet I could observe the same phenomenon as at Péran : the stones were literally cemented together on their surface, some of them had melted and turned into real “lava”. On this site, the theory I read or heard about, that those vitrified stones are clinker resulting from the melting of metals in furnaces situated along the rampart, is not valid. For, at Pionnat, I understood how one can confuse certain crumbled sections of the rampart, forming a kind of vault cemented by stone vitrification, with the cul-de-four of a furnace. This confusion is forgivable in non-specialists who desperately look for an explanation that will satisfy common sense, but it is no longer so when found in the publications of professional archaeologists. One only needs to perceive that what was mistaken for the remains of furnaces possesses none of the necessary structures to make a furnace work (air intake, etc.). We actually have to deal with a “lava bubble”, such as can be found in natural volcanic structures, except that, in the present case, we have an artificially vitrified building and not a natural phenomenon.

Since this trip to Creuse, I have of course carried on investigations which allowed me to trace other genuine vitrified forts , especially two of them in the area of the city of Roanne (May 1999) and another in the Allier department (May 2000).

I found that the extension area of those structures, which I first believed to be limited to Scotland, was much broader, since it covers a great part of the so-called Celtic era, though previous to the coming of the Celts to western Europe, since it dates back to the iron age.

Acknowledgments:

Thank you for helping in this translation to Mmes BOURDEIX, BRIVET et CUVELIER

(1 )LES CELTES (1997) suggest the date of the final Tene, that started about 125-115 B.C. for the building of fortresses with the technique called murus gallicus (p.292)

(2 )RITCHIE (1988), p.61. This hypothesis to explain the vitrification of those works, seems appealing a priori . Indeed it is taken up by most writers on the subject without further critical investigation. We will see later how it should be appraised.

(3) GIFFORD (1992), p.22.

(4) MARKALE (1997), pp.133-34. The author, perhaps because he is no archaeologist, is one of the few who attempted to draw a sincere description, and above all a clear explanation of the phenomenon.

(5) NICOLARDOT (1991), p.7.

(6) Here is yet another absurd “hypothesis” to try and explain the mystery of vitrified hillforts : volcanism. Now, on the site of Péran, as on all those I could see, volcanism provides no explanation, for the geographical areas where they lie show no sign of volcanic activity.

(7) A classical assumption but, as I said, not confirmed to this day.

(8) KOUSNETSOV, IVANOV,VELETSKY (1989).

(9) F.AUDOUZE and O. BUSCHENSHUTZ (1989).

(10) Gordon CHILDE, for ex.

(11) Let us observe that this chapter is strangely headed “Glass Castles”, without any explanation in the following text. I would probably not have noticed this point had I not previously read Jean MARKALE.

(12) My emphasis.

(13) Writers do not comment on these assumptions, and one does not know what they think of them. As for me, I find it hard to believe that one can seriously contemplate such a “hypothesis”.

(14) But, to my mind, equally unlikely.

(15) My emphasis.

(16) Let me be allowed to remark that tha author himself is not as assertive (RALSTON, 1992). Moreover, it seems that no relations of cause and effect should be inferred from this observation, since if the oppida built according to the murus gallicus technique often show traces of fire, we have seen that burning the wooden structure is not enough to vitrify the stone blocks.

(17) Which is also the case of the Camp de Péran, as I could verify.

(18) The Camp de Péran, especially, is neither named nor shown on the map figuring in the book.

(19) The same archaeologist was in charge of the Péran research.

(20) Particularly Georges NAUD, chairman of the Société archéologique d’Ardèche and curator of the Musée de la terre ardéchoise, Privas. Sample analyses are in progress at the Ecole des Mines d’Alès.

(21) MARKALE, op.cit.

(22) MARKALE, op. cit.

(23) KOARER-KALONDAN (1973), p.80.

(24) PERSIGOUT (1980), p. 40.

(25)PERSIGOUT (1980), p.184

(26)MARKALE (1997), p.354.

(27) In bolga one finds the root bolg meaning “lightning” and “sun fire”.

(28) Op.cit., p.395.

(29) MARKALE (1997) quoting R.A.S. MACALISTER, Leabhar na Gabala, poem 66.

(30) RALSTON, (1992).

Roland Comte granted a Master’degree in Political Science and is a Doctor of anthropology (EHESS, University of Paris-Sorbonne ). E-mail : rcomte2@wanadoo.fr

Guide – Mining Glossary

Mining Terms

Adit or Drift

A tunnel driven from the surface underground or driven between seams. Used for pumping, transport, ventillation and manriding.

Afterdamp
Description given to the gases (noxious) remaining in a mine after an explosion, usually with a high content of Carbon Dioxide

Anvil Stone

In early mining activities, ores were crushed by placing them on a flat anvil stone and hitting them with a hammer stone.

Air gate

The return roadway for stale air from the face to the surface.

Anthracite
Coal which is high in carbon with a small percentage of volatile matter

Bank
The surface of the mine, usually referring to the entrance to the pit shaft.

Banksman

The colliery official responsible for overseeing the loading and unloading of the pit cage at the surface (see Bank). The banksman was also in charge of signalling

Barrier
A portion of coal seam left intact between two collieries

Basset or Basset Edge.

The place where a seam surfaces usualy as a result of geological action on the strata.

Bell Pit.

As the name suggests the mining operation produced a bell shaped pit. This was an early form of mining comprising of a shallow shaft into a seam. Coal was extracted and pulled up to the surface in baskets via a rope. A bell pit was complete when the pit was in immenent danger of collapse. A new shallow shaft would be sunk and the process started again. There will be many bell pits in an area.

Blackdamp
A mixture of carbonic acid gas and nitrogen

Blower
A discharge of firedamp under extreme pressure. (see firedamp)

Bords
The ‘gap’ left by mining coal in a ‘bord and pillar’ method. Describes the gap between pillars left to support the roof after mining. (see pillar)

Bords or stalls were a rectangular area of coal excavation and the pillars were the square colums of coal left for support. Usualy worked in the shallow wet seams. The pillars were removed many years later by further mining operations.

Brattice
A division created in a mine shaft or tunnel which is used to control or direct the airflow in the mine. One side of the brattice would be the air flow intake and the other, the return

Broken (in the..)
Working ‘in the broken’ was a term used to describe actions in an existing (open) section of the mine as opposed to working on a new face or seam

Checkweighman.

This was a very important job as he represented the interests of his fellow workers to the colliery management by checking the weight of the tubs of coal coming out of the mine. It was his job to keep a check on minerals extracted and to negotiate the true weight of coal coming out of the mine for which the men got paid. Management claiming a ton of coal could be between twenty one and twenty five hundredweight dependent on the amount of slack and small coals it contained, which they would not pay the miners for. The Checkweighman was elected by and financed by the miners.

Corf
A large wicker basket used to transport mined coal to the pit head and then to the surface. Term also sometimes used to describe the wheeled ‘tubs’

Datallers
Term used to describe workers paid strictly on a ‘Day rate’ basis

District
A number of working areas close together but in a separate portion of the coal to be worked

Downcast
The shaft down which fresh air passes into the workings of the mine. Most commonly also used as the winding shaft

Firedamp
The Miner’s description for the naturally occurring ‘marsh gas’ (methane) which results from the decay of vegetable matter. In certain critical volumes, mixed with air, firedamp is highly explosive.

Fire Setting

A very early extraction technique involving setting fires against ore laden rocks then rapidly cooling them with water. The rock fractures and is easily hammered off.

Furnace
A fire placed at the foot of the upcast shaft, the gas laden air from the mine would rise with the heat and create a circulatory ventilation process. Replaced in later years with powerful fans

Gob, Goaf or Goave
An area of the mine which has been previously mined and then used as a depository for waste from the workings. Such areas were normally left to collapse under the natural pressure of the roof

Gate

An underground roadway. From Old English ‘gate’ meaning path or footpath.

Hammer Stone

The earliest type of hammer, a hand size stone cobble perhaps 15cm long used to hit a wedge or chisel in order to separate rocks.

Hutch
Term used for a box container, later fitted with wheels, for the transportation of the coal to the surface (predominately a Scottish term)

Inbye
Direction of travel towards the centre of the mine

Main gate

The intake roadway taking fresh air through the mine and housing the conveyors for supplying the shaft with coal.

Onsetter
The official whose duty it is to ensure that the cage is properly loaded and unloaded at the foot of the shaft

Outbye
Direction of travel away from the centre of the mine

Overman
The Underground Manager (Oversman in Scotland)

Pillar
A pillar of coal left to support the roof above the workings

Putter
A man (or boy) who conveyed the tubs of coal from the face

Road
A main underground thoroughfare

Royalty
An area of coal leased to a colliery by the landowner

Shaft

Vertical entry to a mine latterly using powered winding gear and cages to supply, ride men and materials and take out coal. Formerly using a windlass or other manual means of winding. Usually sited in pairs. (Upcast and Downcast). Since Hartley Colliery Disaster 1862.

Staple Shaft
A vertical shaft in a mine which does not connect with the surface, usually between seams to prove coal measures.

Stoopings
Regional term for pillars

Supply gate

The roadway used to transfer materials to be used in mining operations.

Tail gate.

As air gate.

Timbermen
The men employed to cut and install support timbers

Trapper
Person employed to open and close ventilation doors to ensure uninterrupted flow of air

Upcast
The shaft used, in conjunction with a furnace (or later, a fan) through which the expelled air (and gases) from the mine travel to atmosphere

Viewer
A mining engineer

Waste
Another term for Gob or Goaf

Whimsey Engine, Engine, Whim. Whim Gin.

Was a term first applied to a windlass and then to whim gins (Horse driven winding device). By the early 19th Century it was usually applied to steam winding engines (Fire Engines).

Guide – Bronze Age Mining

Mining in the Bronze Age

In the last twenty years or so, some thirty copper mining sites of Bronze Age date have been identified. This has allowed us to create a reasonably accurate picture of the tools and techniques used during the extraction of copper ores in this distant prehistoric period.

It is only recently the date of such “old Man’s” workings has been verified with carbon dating, prior to this, antiquarians of the past tended to point to a Roman origin for these works.

One of the key sites has been the Munster mines in north central Wales. Here carbon dating of charcoal deposits found in mining spoil in galleries and surface dumps proved the Bronze Age date, these were the remains of fire setting.

It appears that Bronze Age miners exploited visible outcrops of ore. These non ferrous ores where subjected to fire setting, this technology was still in use in the nineteenth century, fires were lit against the surface of the ore, which was then rapidly cooled by the application of water, this caused the rock face to crack so allowing the easier reduction of the ore by hammering.

Hammer stones are often the only visible remains from these very early mines, here natural hard stone cobbles of a handy size are bruised at the ends from use, often they have shallow pecked grooves around their central girth either to secure rope or as a result of hammering. Such cobbles can acquire percussion bruising at any date and on their own cannot form conclusive proof of early mining activities.

The natural occurrence of copper ores, along with tin, lead and zinc in the British Isles tend to be restricted to the Pre Triassic date strata, these are today well known and mapped, although there os also the probability of an even larger number of ore sites available to the Bronze Age peoples, sites that may have been worked out by the time historic mining activity allowed the mapping of ore deposits.

Process

Resources Used

Evidence Remains
Mining Activities
Extracting ore: Fire setting.
Fire wood stocks.
Charcoal.
Hammering: Breaking off ore fragments.

Hard stone cobbles, bone and antler points and wedges.

Discarded hammer stones.
Removal of rock from mine.
Wood for tools and containers.
Organic items in suitable condition.
Surface processing activities close to mines
Ore Dressing: Crushing and selecting copper minerals.
Hammer stones and anvil stones.
Waste heaps of non-copper minerals and rock fragments.
Ore Concentration: Fine crushing of copper minerals.
Hammer stones and anvil stones.
Discarded hammer stones and anvil stones.
Roasting: to reduce sulphide ores only.
Fire wood stocks.
Hearths, charcoal.
Smelting: Ore mixed with charcoal, heated in furnace producing metallic copper.
Charcoal prepared from selected wood, clay for furnace wall.
Charcoal, slag, burnt and fused clay, run-copper.
Workshop activity, close to or distant from mine.
Casting: Collected metallic copper in crucible melted in a furnace and poured off to produce a ‘cake’ or ingot.
Hardwood charcoal, refractory clay for crucible and furnace.
Charcoal, furnace and crucible fragments, metal splashes.

Guide – Mining

Guide to Mining

This section illustrates the history of mining and aims to give sufficient information for a researcher to be able to recognise mining features and to be able to identify the periods of working on a site. Mine works are an extensive subject, complicated by the use of different terms for similar features, depending on the type of mine and the region under review.

Contents

Mining in the Bronze Age

Glosary of mining terms

Guide – GPR

Archaeology Techniques

Ground Penetrating Radar (GPR)

GPR for Archaeology

Introduction

Ground Penetrating Radar (GPR) is a variation on conventional radar, rather than into the air, a radio signal is directed into the soil and this is reflected by underground structural variations. It can be very good at detecting the structures of buried masonry structures as well as pits and in some cases artefacts.

Radar was famously developed for military purposes during world war two, and has been adapted for a variety of other purposes, including location of defects in concrete structures. GPR has proven very useful to archaeology where there are voids and substantial deeply-stratified masonry remains. It is particularly valuable on urban sites, ditches, cave structures, ancient mines or large landscape features such as dry river channels, but it is generally of less use in the softer and more finely-differentiated types of deposit encountered on many rural archaeological sites.

Description

High frequency pulsed electromagnetic waves (generally 10 MHz to 2,000 MHz) are used to provide information on buried features and remains. The wave energy is directed into the ground is reflected back to the surface from the edges of the features being scanned. The echoed signals are collected by the GPR equipment and the resulting data can be interpreted to show a map of the buried features and artefacts. The resolution of the scan and the depth of penetration vary depending on the wavelength used.

Integration of the GPR data with other surface geophysical methods, such as seismic, resistivity, or electromagnetic methods can provide a detailed map of the buried features, and a skilled interpreter can often conclude the exact size, nature and composition of the archaeological feature prior to excavation.

Increasingly, archaeological investigations use a combination of geophysical methods to improve the overall accuracy of the survey. Ground penetrating radar is a widely accepted technology for characterizing and imaging subsurface conditions.

Operation

A GPR survey is carried out by pulling a radar scanner across the ground, typically on a wheeled trolley. Readings are taken across a survey grid and then downloaded and plotted.

GPR uses high frequency pulsed electromagnetic waves typically from 10 MHz to 2,000 MHz. The electromagnetic wave is radiated from a transmitting antenna which is generally placed in direct contact with the ground and is designed to focus all the waves into the ground. The waves travel through earth at a rate which is determined by its electrical properties. The wave spreads out and travels downward, if it hits a buried object or change in soil composition, then part of the wave is reflected back to the surface, the extent of the reflection is proportional to the change in electrical characteristics of the buried materials. The rest and the wave energy continues to travel downward, further reflections may be generated as other objects or boundaries are passed through.

The wave reflection is captured by the GPS antenna, and can be recorded on a storage device for later interpretation. Often, the GPR data is one shown as signal versus amplitude, and is referred to as a trace. A single GPR trace consists of the transmitted energy pulse followed by pulses that are received from reflected waves, these are known as layers. A scan is a trace where a colour or grey scale has been applied to the amplitude. As the antenna(s) are moved along the survey line, a series of traces or scans are collected at discrete points along the line. These scans are positioned side by side to form an underground display profile.

GPR Components

GPR equipment consists of a radar control unit, transmit and receive antennas, and a suitable data storage device. The radar control unit generates trigger pulses to the transmitter and receiver electronics in the antennas. These pulses allow the antenna electronics to generate a sampled waveform of the reflected radar pulses.

The transmit antenna generates the pulsed wave and directs it into the ground, the receive antenna picks up the reflected pulses and passes these back to the control unit, which converts this information into signals suitable for logging.

Use of a specific antenna is determined by the required results. A GPR will normally come with a range of antenna, which allow for a range of frequencies to be used, typically these will range from 10 to 2000 MHz. Higher frequency means better resolution, but with more significant electromagnetic wave attenuation in the environment, resulting in lower sounding depth; and vice versa – lower frequency may lead to a larger penetration depth at the sacrifice of poorer resolution. Lower frequency operation produces larger initial insensitivity area (“blind” zone) of a GPS.

Comparison of frequencies used and typical responses

Frequency range
2 GHz
900 MHz
500 MHz
300 MHz
150 MHz
75 MHz
38 MHz
Resolution, m
0.06-0.1
0.2
0.5
1.0
1.0
2.0
4.0
“Blind” zone, m
0.08
0.1-0.2
0.25-0.5
0.5-1.0
1.0
2.0
4.0
Depth, m
1.5-2
3-5
7-10
10-15
7-10
10-15
15-30

GPR systems are digital devices and logging is done with digital devices for post survey analysis. Many data loggers also come with display electronics and allow in the field data manipulation. Often this is done with a laptop computer. In order to display the data for interpretation, it must first be filtered to remove noise, it is normal to store the raw data so that a variety of filter options can be tried later.

Operating Modes

The most common way of using a GPR as the reflection profiling method. Here, a radar wave is transmitted, received and recorded each time the antenna has been moved a fixed distance across the ground. It should be noted that GPR can also be used on other surfaces such as water.

Another way of using GPR is in three-dimensional operation, which collects data samples at closer intervals of less than 1 meter. This result in very large amounts of data which can be manipulated to three dimensional model of the survey area.

Transillumination is a rare but sometimes effective way of using GPR, it involves placing the transmitter and receiver on opposite sides of the material to be surveyed and can provide very accurate measurements of mines and other shafts.

Data Display and Interpretation

Three buried objects in a two dimensional display

In order for the correct interpretation of underground features it is essential that the data is displayed in a way that easily facilitates this. There are three of displaying the results of a GPR survey – 1) a one-dimensional trace, 2) a two dimensional cross-section, and 3) a three-dimensional display.

One-dimensional traces

The wiggle trace (or scan) is the building block of all GPR survey data. A single trace can be used to detect objects (and determine their depth) underground. By moving the GPR antenna over the ground and recording traces at a fixed spacing, a recording of several sections is obtained.

Two-dimensional cross sections

Wiggle trace displays are often impractical to display due to the number of traces required to make up meaningful data and scan displays have become the standard form of two dimensional display of GPR data. A scan display is created by assigning a colour to amplitudes displayed on the trace.

Three-dimensional displays

Three dimensional displays are created when the GPR traces are recorded at different positions ground surface. Data can be recorded along profile lines, in the case of continuous recording, or at discrete points along the surface in fixed-mode recording. Once 3D block views have been produced, they can be observed from a variety of viewpoints and ways, including solid block or block slices.

Creating a good three dimensional view is a very useful way of analysing the results of a GPR survey, but takes the most processing power and time. Careful choice of colour coding scheme and noise filtering is an important part of the image generation process.

Costs

The cost of GPR systems vary widely depending on their complexity. Most systems fall in the £10,000 to £35,000 range.

Guide – Resistivity

Archaeology Techniques

Resistivity

The electrical resistance of the Ground is almost entirely dependant upon the amount and distribution of moisture within it. Buried remains affect this distribution and can be detected with instruments. Stone, for example, is more moisture resistant than a clay subsoil or the filling of a ditch. These resistivity differences can be detected and when overlaid on a map will often give a plan of buried remains.

Resistivity survey methods have been used to detect both natural and archaeological features since the techniques discovery in 1946.

When one encounters a soil resistivity survey in progress, several thoughts spring to mind. How can objects deep under the ground be detected by electrodes inserted only a few centimetres? And why are four (sometimes five) electrode probes needed? Do differing types of soil affect the precision of the readings?

This guide aims to provide sufficient background information to allow the lay person to understand the basic principles of resistivity survey for archaeology.

First Principles

Those who remember physics lessons in school may remember that when an electrical voltage is applied between the ends of an electrical conductor such as wire, a current flows through it; the size of the current depending on the resistance of the conductor. The symbol for resistance is R, measured in ohms (often represented by the Greek letter omega).

Water, in its natural state, is an insulator. However, with a little salt added, it soon allows current to flow. Chemicals which have this effect on water are known as electrolytes. The resistance of soil is almost entirely dependant on its water content and the electrolyte “mix” it contains. Most of its other components, such as stone, are largely insulators. Buried wood generally tends to attract water and so reduces the resistance in that area.

Resistivity is a uniform measure which allows the resistance of different substances to be compared. It is defined as the resistance of a cubic meter of material when a 1 volt charge is applied between the two opposite faces of the cube. The unit of resistivity is the ohm metre, its symbol is the Greek letter rho.

The resistivity of soil can vary from 1-10 ohm-metres; porous rocks 100-1,000 ohm-metres and non porous rocks anything from 10k to 10m ohm-metres.

Contrary to how it may first appear, current does not flow through soil as a direct path. Current flowing between two electrodes in soil will spread out into a myriad of paths rather like the force bands surrounding a magnet. The total resistance is a sum of the resistance offered down each path. It can be seen therefore that a ditch cut through a rock base will show lower resistance in surface measurements than the natural soil and rock layer around it. In fact, the lower the resistance the deeper the current will travel – due to the like charged particles repelling each other, thus causing a wider spread of current.

Technically, resistivity measurements could be made using a household resistance meter. A calculation would be required to work out the resistivity and indeed some of the first resistivity devices used by archaeologists were based on an electrician’s “Megger” – a device normally used to certify domestic electricity circuits. However, due to design limitations these devices are generally unsuitable for soil resistivity measurement.

Measuring Soil Resistance

Measuring the resistance of soil presents us with problems. The electrodes applying the current have a small contact area compared to the volume of ground to be measured. At its surface soil tends to be dry, thus providing a poor contact medium. These effects create a much higher resistance in the immediate area of the electrodes, which would tend to cancel out any reading from the ground in between.

The solution to this problem was found by creating a probe with four electrodes. Known as the Wenner system, these are placed at equal distance in a line – the outer two apply the current, the inner two measure the voltage of the ground. These two measurements – voltage and current – are used to calculate the ground resistance (R=V/I).

In addition to this a high impedance measuring circuit helps take into account variations in surface contact conditions. An AC circuit is used as DC current would effectively turn the soil into a battery and mess up the readings. A further refinement uses a phase-sensitive rectifier to cancel out other interference.

Types of instruments

Manual Balance Instruments

These early instruments used an on-board dial to allow the resistance to be matched and noted; often the probes were pushed in individually. In some cases a rotary switch and a five probe design allowed a measurement to be taken each time a single probe was moved. Often two skilled operators were required.

Automatic Instruments

In general, manual balance systems have been consigned to the past, thanks to electronic devices such as data loggers which automatically sample and store the measurements, and the creation of a probe ‘cradle’ which allows an individual to survey a field at near walking speed.

Data Loggers

With a data logger, every time the probe cradle is inserted into the soil, a button is pressed to take a sample. The data logger – an electronic device attached to the cradle – takes the resistance readings and stores them in sequence.

Later, either on site or in the office, these samples can be plotted against a map to provide a clear picture of the resistivity changes of the subsoil, often giving feature markings so clear that little confirmation excavation is needed.

Laptop Computers and Beyond

The advent of the laptop and sub-laptop computer, together with the ability to provide data logging and sampling onboard, will ultimately create a cradle capable of giving a “live” display of the underground resistance topology. The technology for this advance exists currently, but will need a little development before it can be realised.

Resistivity for Archaeology

A feature of high resistance buried in the ground will cause the resistance of the overall local area to increase, this is known as a “positive anomaly”. Conversely, a feature such as a rock cut ditch will lower the overall resistance and is known as a “negative anomaly”.

In the early days it was assumed that based on the above, features such as stone foundations and walls would always give high resistivity readings and therefore be positive anomalies. However experience has shown that whilst this can be the case, often other factors such as the features geometry, associated deposits, soil moisture content and electrode configuration can cause complications to this rule.

However, a significant amount of research effort has created a range of designs which offer a robust and reliable surveying tool.

Electrode Configurations

The first experiments with soil resistance were carried out by Frank Wenner in 1916. His original four electrodes in a line configuration with two current electrodes to apply power (C1,C2) and two potential electrodes to measure resistance (P1,P2) has been adopted and modified by archaeologists based on the results of extensive testing.

During testing, it became clear that for some features the Wenner and related probe configurations were not effective at detecting some types of underground features. Narrow features were found to show double or even treble readings.

As a result of this a wide range of electrode configurations have been evaluated giving archaeologists the option of a range of electrode configurations to suit the ground and type of feature.

The Wenner configuration is still a commonly used configuration, as it offers good all round functionality for most types of submerged features. The wenner configuration can sometimes exaggerate the width of the anomaly and is susceptible to misinterpret some high resistance features.

C1 P1 P2 C2

Wenner electrode configuration

For very shallow features, the Double Dipole configuration has been shown to give particularly good results, this configuration, also known as the Wenner beta configuration is created by taking the Wenner configuration and swapping on current electrode for a potential electrode.

C1 C2 P2 P1

Double dipole electrode configuration

A more recent development, the Twin Electrode configuration sees the Wenner design cut in half and provides for a half size cradle as well as almost eliminating some of its inaccuracies. With the twin electrode configuration, two probes are fixed at a static point to one side of the test area. The other two probes are attached via a long lead and are moved around the survey site. This design helps to eliminate the exaggeration of high resistance features.

C1 C1 – – – – – – – – – – – – – – – – – – – -C2 P2

Fixed Mobile probe

Twin electrode configuration

One other electrode configuration worthy of mention is the Square Array, this was developed as a solution to the poor response given by the Wenner configuration to small buried objects. With this configuration the probe looks like a small table and tends to be used in more specialist circumstances.

C1 C2

P1 P2

Square Array configuration

The Impact of Soil

Now that we have a better understanding of the relationship between the buried feature and the types of probes used for resistivity, it is important to understand the effect different soils and moisture levels with readings.

The structure of soil

Generally, when we are talking about soil, we are considering several different factors, each of which are inter-related. Firstly, the top layer of soil is usually a loam type material with varying amounts of other materials either due to natural deposition or related to the natural bedrock. The actual resistivity of this soil is a combination of this soil composition and the retained moinsture at the time of the survey. The level of moisture retained by soil is a result of that particular soils natural drainage, and the drainage provided by the underlying bedrock.

In some times of the year, the soil effectively becomes waterlogged and this will result in many features being hidden by the overall low resistance of the soil

The following section illustrates the impact of bedrock on a features resistivity and discusses the impact of rainfall in order to identify the likely results for a particular feature as well as proposing the best time of year to survey for each bedrock type.

Bedrock type
Feature
Dimensions
Anomaly type
“Season”
Best
Sandstone
Ditches
W1-4m D3m
Low
Jun-Sept
July
Clay
Rubble Wall
W10m D1m
High
Jun-Nov
Sept
Limestone
Stn Coffin
W.5m D1.5m
High
Jul-Oct
Oct
Chalk
Ditch
W18m D6m
Low
Dec-Jun
Mar-Apr
Chalk
Ditch
W2.5m D1m
High
Jul-Nov
Sept
Chalk
Ditch
W6m D2m
Low/High
Dec-June
Mar-Apr

The Best “Season”

The above table gives example responses for types of anomaly and time of year. The first point to note is that features provide differing levels of response throughout the year. The main reason for this is the amount of rain held in the soil. As soil becomes soaked its resistance lowers until the readings from many features become “swamped” or hidden by this low resistance (low resistance features will disappear once the surrounding soil reaches the same resistance. Also hi resistance features may go by unnoticed when surrounded by very low resistance soil).

The amount of moisture retained by the soil is largely dependent on two things – amount of rainfall and drainage. Rainfall is typically seasonal, thus over the winter months many sites became waterlogged and unreadable.

The drainage for a particular site is dependent on many localised factors such as slope of the land. The underlying bedrock however commonly plays a significant role in determining the soils water content. An impervious rock such as sandstone will typically retain moisture for longer and therefore the resistivity “season” is shorter. By the same reasoning each local area will have a best time to survey depending on the local drainage and recent rainfall.

The size and nature of the buried feature also has an impact on the definition shown by a resistivity survey. Stone tends to have a higher resistance than the low resistance soil and even with relatively high resistance bedrock such as clay. Ditches generally always show a low resistance, the deeper the ditch the lower the resistance since deep ditches cut through the bedrock, lowering the depth of the low resistance fill.

Chalk can give conflicting results due to its structure. When it is dry, small ditches will tend to show a low resistance reading. However, chalk can act like a sponge when waterlogged, changing its resistance “form” from damp chalk to that of chalky water. In these conditions the bedrock becomes very low resistance and the ditch reads as a high resistance anomaly. Furthermore it has been found that in some cases due to the local water table the anomaly can fluctuate between high – neutral – low readings throughout the year and it is with this in mind that in chalk areas two resistivity surveys approximately. six months apart are recommended (spring and autumn).

Guide – Hidden Remains

Hidden Remains

Identification of features is simplified when the full extent of remains such as earthworks, can be easily seen. However, once the roof has gone, the walls perished or robbed, the interior burnt and the wreck left to perish for hundreds of years, the remainder flattened and used as a field for crops, the job of recognition is made all the more difficult. Fortunately, even without specialist equipment, there are a number of techniques that can be used to shed further light on features under investigation.

Field Markings

Ray Selkirk

Old foundations of walls are often found buried, gods creatures as well as the elements can accumulate a lot of soil, given the right ground conditions. The rate of burial will differ in open country to that in towns, where each generation flattens buildings and starts again on top of the rubble, the ancient habitation-layers can be twenty or thirty feet below the modem surface.

It is well known that under certain conditions, tell-tale marks manifest themselves in open country and if viewed from above, the shapes of these marks often reveal the location and identity of buried features. These give-away marks can be seen as differential colouring of vegetation above buried features (crop marks); white-outlined shapes produced by a thin dusting of snow collecting in slight hollows, or drifting along ridges (Snow marks); shapes visible in bare ground where the farmer has filled in an old ditch with a different coloured soil (soil marks); and shadowy shapes produced by low angle suimght outlining undulations almost imperceptible at ground level (shadow marks).

These manifestations were observed long before the development of aeroplanes: about 1740, the antiquarian, William Stukeley was ridiculed when he said that from a hilltop, he could see the distinctive shape of a Roman temple in a field of corn. Pioneer balloonists also reported similar sightings but it was not until the tremendous expansion of aviation in the 1914-18 World War that serious notice was taken of the phenomena. The various types of marks are explained as follows:

Crop marks

For crop marks to show, two conditions must be met. Firstly, the right type of crop must be planted in the field which contains the hidden archaeological site (cereal crops give the best results by far), and secondly, a drought or period of dry weather be experienced. The ancient peoples were enthusiastic ditch-diggers and even though infilled, these deep cuttings in the subsoil retain water, and during dry weather, the roots of a cereal easily penetrate the loose infill with the result that the crop over the ditch grows taller, thicker and of a deeper shade of green. This is known as a “positive crop mark.” Where the hard subsoil has not been disturbed, the crop’s roots reach the level of the subsoil and stop, resulting in a uniform shade of medium green.

Over old foundations or road metalling, the crop grows stunted and of a yellow-
green colour. This is a “negative crop mark.” When a cereal crop is ripe, the positive crop mark is still visible as a deeper gold colour and the negative mark as a more watery yellow.

What Stukeley had seen from his hilltop was the crop mark of a Roman temple. About the same period, negative crop marks were reported in France over the ploughed-out remains of circular burial mounds. On these, plant growth was sparse and they were known locally in northern France as danses defees (fairy dances).

Even after the crop is harvested, the thick growth over the infilled ditch can be seen as a deeper colour in the remaining stubble and a suitable name for this would be a “stubble mark.” Crop marks can show up in plants other than cereals, such as peas and beans or sugar beet, but the contrasting marks in these, and other crops are much inferior to those produced by wheat, oats and barley.

Soil marks

These marks are useful in winter and do not rely on a combination of cereal crops and a drought. Quite often, when a farmer has infilled an old ditch, the soil he has used is of a different colour and is easily visible from an elevated position. Sites which show-up as soil marks in bare fields in winter invariably produce crop marks in the other seasons if the right conditions are met.

Shadow marks

Many fields are in permanent pasture and have not been cultivated for hundreds of years or even longer. If the surface of such a field contains very slight undulations such as the last remnants of ancient earthworks and ditches, these may be invisible to the observer at ground level, but when viewed from an aircraft in low-angle sunlight in early morning or late evening and especially in winter and spring when the grass is short and the Sun’s altitude small, the shape of the whole habitation appears as if by magic. One side of the almost flattened earthwork is highlighted and the other is in shadow. The almost invisible ditch likewise has one side highlighted with the other in shadow. Thus the whole shape of the site is revealed.

The marks show best when viewed from above, down-sun of the site, so surrounding hills would be an advantage, more determined searches for shadow marks done by air should be conducted with the aircraft being flown in a series of advancing circles.

The British archaeologist Sir Leonard Woolley (1880-1960), who excavated Ur in 1922-9 had been attempting earlier to locate an ancient Egyptian cemetery below the Second Cataract of the Nile near Wadi Haifa. This site had eluded Sir Leonard and the expedition leader, D R Maclver. but one evening, after a hard day’s search, the two men climbed a hill to view the sunset. In the low-angled sunlight, strange circles, invisible at ground level, appeared at the base of the hill. As Sir Leonard descended, the circles disappeared, but Maclver, who had remained behind was able to direct him to the positions with hand signals. Sir Leonard marked them with small cairns. Next day, workers excavated the marked positions and found a tomb at every one.

When crop mark conditions are present, the corn or barley grows higher over the infilled ditch and in low-angle sunlight, this casts a shadow, and an excellent combination of crop marks and shadow marks is obtained.

During the nineteenth century, soldiers who had served at Gibraltar said that when they looked from the top of the rock, towards the Spanish border to the north, they could see the remains of the old Spanish lines which were invisible at ground level.

Snow and frost marks

Snow marks are rather like shadow marks etched with a white paint brush. Faint traces of earthworks are necessary, and in a light dusting of snow, the ditch is painted with a bright white band. A bank, even a slight one, causes drifting, and a combination of snow marks and low-angle-sun shadow marks can produce a most striking result.

Heavy snow obliterates all signs of the site. During the thaw, the snow remains in the ditch long after the remainder of the field is clear. Possibly the latter would be better called “melt marks.” Closely related to melt marks are “frost marks”: when a field is covered with frost, ancient stonework below ground level retains heat better than the surrounding soil and the line of the foundation is revealed by the absence of frost, and shows as a dark line.

Parch marks

Crop marks do not normally show up in grassland, but during a period of hot dry weather, lawns and pastures which hide buried roads or stone foundations, reveal their secrets when the grass above the stonework or metalling becomes scorched and turns brown.

Plant marks

Some wild flowers and weeds like to grow over old stonework, and quite often, a field with a buried line of stone develops a prominent line of flowering weeds above invisible foundations. Poppies have an affinity for wetter infilled ditches outside the ramparts of Iron Age British hillforts.

Similarly, nettles like highly furtile, deep soil and have a tendancy to cluster in ditch fillings and locations rich in neutrients, such as waste sites and areas with large amounts of buried decaying wood. In moorland areas the difference in soil depth can be easily seen as heather gives way to ferns.

Trees can also be good indicators, many boundaries have been lined with thorn trees since Iron Age times, the presence of these can sometimes help confirm earlier boundaries, in some cases, the enclosure walls of hillforts may have been lined with thorn. One tree – the Yew can be particularly useful in dating a site, this is an extremely long lived tree, which also has highly poisonous leaves. It is reckoned that for every foot around it’s girth a Yew may have lived 30-40 years. Another adage is that it grows a bough for every thousand years.

Wind marks

When positive crop marks are present, the cereal growth above the ditch is higher than that over the rest of the field. Strong winds can strike the projecting tops, and the end result is that the corn is flattened along the lines of the ditches.

Spurious marks

Where horses or goats have been tethered, they may have grazed circles of grass which can look like the marks of Iron Age huts when viewed from an aircraft.

Circular bands of dark grass caused by fungi (fairy rings) can also look like the marks left by ancient rondavels.

A straight track of stunted grass across a field need not be evidence of an ancient road. It may be an animal path, the cattle having been kept in a straight line by a thin electrified wire, invisible to the airborne searcher.

Contact Us
close slider

    What is 8 x 8 ?